BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37310664)

  • 1. Transposon insertion profiling by sequencing (TIPseq) identifies novel LINE-1 insertions in human sperm.
    Berteli TS; Wang F; McKerrow W; Navarro PA; Fenyo D; Boeke JD; Kohlrausch FB; Keefe DL
    J Assist Reprod Genet; 2023 Aug; 40(8):1835-1843. PubMed ID: 37310664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells.
    McKerrow W; Tang Z; Steranka JP; Payer LM; Boeke JD; Keefe D; Fenyö D; Burns KH; Liu C
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1795):20190335. PubMed ID: 32075555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposon insertion profiling by sequencing (TIPseq) for mapping LINE-1 insertions in the human genome.
    Steranka JP; Tang Z; Grivainis M; Huang CRL; Payer LM; Rego FOR; Miller TLA; Galante PAF; Ramaswami S; Heguy A; Fenyö D; Boeke JD; Burns KH
    Mob DNA; 2019; 10():8. PubMed ID: 30899333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human transposon insertion profiling: Analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer.
    Tang Z; Steranka JP; Ma S; Grivainis M; Rodić N; Huang CR; Shih IM; Wang TL; Boeke JD; Fenyö D; Burns KH
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):E733-E740. PubMed ID: 28096347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. euL1db: the European database of L1HS retrotransposon insertions in humans.
    Mir AA; Philippe C; Cristofari G
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D43-7. PubMed ID: 25352549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L1 hybridization enrichment: a method for directly accessing de novo L1 insertions in the human germline.
    Freeman P; Macfarlane C; Collier P; Jeffreys AJ; Badge RM
    Hum Mutat; 2011 Aug; 32(8):978-88. PubMed ID: 21560187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-genome analysis reveals the contribution of non-coding de novo transposon insertions to autism spectrum disorder.
    Borges-Monroy R; Chu C; Dias C; Choi J; Lee S; Gao Y; Shin T; Park PJ; Walsh CA; Lee EA
    Mob DNA; 2021 Nov; 12(1):28. PubMed ID: 34838103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa.
    Lazaros L; Kitsou C; Kostoulas C; Bellou S; Hatzi E; Ladias P; Stefos T; Markoula S; Galani V; Vartholomatos G; Tzavaras T; Georgiou I
    Fertil Steril; 2017 Mar; 107(3):821-830. PubMed ID: 28139237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of long interspersed element-1 retrotransposons as potential risk factors for idiopathic temporal lobe epilepsy.
    Doyle GA; Reiner BC; Crist RC; Rao AM; Ojeah NS; Arauco-Shapiro G; Levinson RN; Shah LD; Sperling MR; Ferraro TN; Buono RJ; Berrettini WH
    Epilepsia; 2021 Jun; 62(6):1329-1342. PubMed ID: 33826137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive profiling of L1 retrotransposons in mouse.
    Zhang X; Celic I; Mitchell H; Stuckert S; Vedula L; Han JS
    Nucleic Acids Res; 2024 May; 52(9):5166-5178. PubMed ID: 38647072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of occult human-specific LINE-1 insertions using long-read sequencing technology.
    Zhou W; Emery SB; Flasch DA; Wang Y; Kwan KY; Kidd JM; Moran JV; Mills RE
    Nucleic Acids Res; 2020 Feb; 48(3):1146-1163. PubMed ID: 31853540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MAEL promoter hypermethylation is associated with de-repression of LINE-1 in human hypospermatogenesis.
    Cheng YS; Wee SK; Lin TY; Lin YM
    Hum Reprod; 2017 Dec; 32(12):2373-2381. PubMed ID: 29095993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LINE1 insertions as a genomic risk factor for schizophrenia: Preliminary evidence from an affected family.
    Guffanti G; Gaudi S; Klengel T; Fallon JH; Mangalam H; Madduri R; Rodriguez A; DeCrescenzo P; Glovienka E; Sobell J; Klengel C; Pato M; Ressler KJ; Pato C; Macciardi F
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jun; 171(4):534-45. PubMed ID: 26990047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells.
    Arokium H; Kamata M; Kim S; Kim N; Liang M; Presson AP; Chen IS
    PLoS One; 2014; 9(10):e108682. PubMed ID: 25289675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction Enzyme Based Enriched L1Hs Sequencing (REBELseq): A Scalable Technique for Detection of Ta Subfamily L1Hs in the Human Genome.
    Reiner BC; Doyle GA; Weller AE; Levinson RN; Namoglu E; Pigeon A; Perea ED; Weickert CS; Turecki G; Mash DC; Crist RC; Berrettini WH
    G3 (Bethesda); 2020 May; 10(5):1647-1655. PubMed ID: 32132168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A benchmark and an algorithm for detecting germline transposon insertions and measuring de novo transposon insertion frequencies.
    Yu T; Huang X; Dou S; Tang X; Luo S; Theurkauf WE; Lu J; Weng Z
    Nucleic Acids Res; 2021 May; 49(8):e44. PubMed ID: 33511407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile element insertions are frequent in oesophageal adenocarcinomas and can mislead paired-end sequencing analysis.
    Paterson AL; Weaver JM; Eldridge MD; Tavaré S; Fitzgerald RC; Edwards PA;
    BMC Genomics; 2015 Jul; 16(1):473. PubMed ID: 26159513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion.
    Wimmer K; Callens T; Wernstedt A; Messiaen L
    PLoS Genet; 2011 Nov; 7(11):e1002371. PubMed ID: 22125493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling.
    Ewing AD; Smits N; Sanchez-Luque FJ; Faivre J; Brennan PM; Richardson SR; Cheetham SW; Faulkner GJ
    Mol Cell; 2020 Dec; 80(5):915-928.e5. PubMed ID: 33186547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gestational arsenic exposure induces site-specific DNA hypomethylation in active retrotransposon subfamilies in offspring sperm in mice.
    Nohara K; Nakabayashi K; Okamura K; Suzuki T; Suzuki S; Hata K
    Epigenetics Chromatin; 2020 Dec; 13(1):53. PubMed ID: 33267854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.