These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37310890)
1. Fully Automated Longitudinal Assessment of Renal Stone Burden on Serial CT Imaging Using Deep Learning. Mukherjee P; Lee S; Elton DC; Nakada SY; Pickhardt PJ; Summers RM J Endourol; 2023 Aug; 37(8):948-955. PubMed ID: 37310890 [No Abstract] [Full Text] [Related]
2. A deep learning system for automated kidney stone detection and volumetric segmentation on noncontrast CT scans. Elton DC; Turkbey EB; Pickhardt PJ; Summers RM Med Phys; 2022 Apr; 49(4):2545-2554. PubMed ID: 35156216 [TBL] [Abstract][Full Text] [Related]
3. Ultra-low-dose limited renal CT for volumetric stone surveillance: advantages over standard unenhanced CT. Planz VB; Posielski NM; Lubner MG; Li K; Chen GH; Nakada SY; Pickhardt PJ Abdom Radiol (NY); 2019 Jan; 44(1):227-233. PubMed ID: 30073402 [TBL] [Abstract][Full Text] [Related]
4. Automatic Detection and Scoring of Kidney Stones on Noncontrast CT Images Using S.T.O.N.E. Nephrolithometry: Combined Deep Learning and Thresholding Methods. Cui Y; Sun Z; Ma S; Liu W; Wang X; Zhang X; Wang X Mol Imaging Biol; 2021 Jun; 23(3):436-445. PubMed ID: 33108801 [TBL] [Abstract][Full Text] [Related]
5. Deep-Learning Segmentation of Urinary Stones in Noncontrast Computed Tomography. Kim YI; Song SH; Park J; Youn HJ; Kweon J; Park HK J Endourol; 2023 May; 37(5):595-606. PubMed ID: 36924291 [No Abstract] [Full Text] [Related]
6. Deep learning model-assisted detection of kidney stones on computed tomography. Caglayan A; Horsanali MO; Kocadurdu K; Ismailoglu E; Guneyli S Int Braz J Urol; 2022; 48(5):830-839. PubMed ID: 35838509 [TBL] [Abstract][Full Text] [Related]
8. Quantification of asymptomatic kidney stone burden by computed tomography for predicting future symptomatic stone events. Selby MG; Vrtiska TJ; Krambeck AE; McCollough CH; Elsherbiny HE; Bergstralh EJ; Lieske JC; Rule AD Urology; 2015 Jan; 85(1):45-50. PubMed ID: 25440821 [TBL] [Abstract][Full Text] [Related]
9. Validating Automated Kidney Stone Volumetry in CT and Mathematical Correlation with Estimated Stone Volume Based on Diameter. Wilhelm K; Miernik A; Hein S; Schlager D; Adams F; Benndorf M; Fritz B; Langer M; Hesse A; Schoenthaler M; Neubauer J J Endourol; 2018 Jul; 32(7):659-664. PubMed ID: 29860872 [TBL] [Abstract][Full Text] [Related]
10. Effective deep learning classification for kidney stone using axial computed tomography (CT) images. Sabuncu Ö; Bilgehan B; Kneebone E; Mirzaei O Biomed Tech (Berl); 2023 Oct; 68(5):481-491. PubMed ID: 37129960 [TBL] [Abstract][Full Text] [Related]
11. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis. Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541 [TBL] [Abstract][Full Text] [Related]
12. Automated volumetric assessment by noncontrast computed tomography in the surveillance of nephrolithiasis. Patel SR; Wells S; Ruma J; King S; Lubner MG; Nakada SY; Pickhardt PJ Urology; 2012 Jul; 80(1):27-31. PubMed ID: 22578829 [TBL] [Abstract][Full Text] [Related]
13. Comparison of helical computerized tomography and plain radiography for estimating urinary stone size. Narepalem N; Sundaram CP; Boridy IC; Yan Y; Heiken JP; Clayman RV J Urol; 2002 Mar; 167(3):1235-8. PubMed ID: 11832704 [TBL] [Abstract][Full Text] [Related]
14. Atherosclerotic Plaque Burden on Abdominal CT: Automated Assessment With Deep Learning on Noncontrast and Contrast-enhanced Scans. Summers RM; Elton DC; Lee S; Zhu Y; Liu J; Bagheri M; Sandfort V; Grayson PC; Mehta NN; Pinto PA; Linehan WM; Perez AA; Graffy PM; O'Connor SD; Pickhardt PJ Acad Radiol; 2021 Nov; 28(11):1491-1499. PubMed ID: 32958429 [TBL] [Abstract][Full Text] [Related]
15. Rapid kVp switching dual-energy CT in the assessment of urolithiasis in patients with large body habitus: preliminary observations on image quality and stone characterization. Kordbacheh H; Baliyan V; Singh P; Eisner BH; Sahani DV; Kambadakone AR Abdom Radiol (NY); 2019 Mar; 44(3):1019-1026. PubMed ID: 30415309 [TBL] [Abstract][Full Text] [Related]
16. Reduced Dose Computed Tomography: The Effects of Voltage Reduction on Density Measurements of Urolithiasis. Pan S; Su JJ; Syed J; Moore C; Israel G; Singh D J Endourol; 2019 Aug; 33(8):682-686. PubMed ID: 30913924 [TBL] [Abstract][Full Text] [Related]
17. Stone Burden Measurement by 3D Reconstruction on Noncontrast Computed Tomography Is Not a More Accurate Predictor of Stone-Free Rate After Percutaneous Nephrolithotomy Than 2D Stone Burden Measurements. Tailly T; Nadeau BR; Violette PD; Bao Y; Amann J; Nott L; Denstedt JD; Razvi H J Endourol; 2020 May; 34(5):550-557. PubMed ID: 32008375 [No Abstract] [Full Text] [Related]
18. Automated Assessment of Renal Calculi in Serial Computed Tomography Scans. Mukherjee P; Lee S; Pickhardt PJ; Summers RM Appl Med Artif Intell (2022); 2022 Sep; 13540():39-48. PubMed ID: 37093905 [TBL] [Abstract][Full Text] [Related]
19. Efficient and Accurate Computed Tomography-Based Stone Volume Determination: Development of an Automated Artificial Intelligence Algorithm. Cumpanas AD; Chantaduly C; Morgan KL; Shao W; Gorgen ARH; Tran CM; Wu YX; McCormac A; Tano ZE; Patel RM; Chang P; Landman J; Clayman RV J Urol; 2024 Feb; 211(2):256-265. PubMed ID: 37889957 [TBL] [Abstract][Full Text] [Related]
20. Automated renal stone volume measurement by noncontrast computerized tomography is more reproducible than manual linear size measurement. Patel SR; Stanton P; Zelinski N; Borman EJ; Pozniak MA; Nakada SY; Pickhardt PJ J Urol; 2011 Dec; 186(6):2275-9. PubMed ID: 22014818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]