BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 37311162)

  • 1. Time Series Prediction of Lung Cancer Death Rates on the Basis of SEER Data.
    Altuhaifa F
    JCO Clin Cancer Inform; 2023 Jun; 7():e2300011. PubMed ID: 37311162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study.
    Wang YW; Shen ZZ; Jiang Y
    BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and Forecasting of Area Under Cultivation of Rice in India: Univariate Time Series Approach.
    Annamalai N; Johnson A
    SN Comput Sci; 2023; 4(2):193. PubMed ID: 36778724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the number of unemployed in South Sumatra Province using the exponential smoothing methods.
    Gustriansyah R; Alie J; Suhandi N
    Qual Quant; 2023; 57(2):1725-1737. PubMed ID: 35694111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA).
    ArunKumar KE; Kalaga DV; Sai Kumar CM; Chilkoor G; Kawaji M; Brenza TM
    Appl Soft Comput; 2021 May; 103():107161. PubMed ID: 33584158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short and Long term predictions of Hospital emergency department attendances.
    Jilani T; Housley G; Figueredo G; Tang PS; Hatton J; Shaw D
    Int J Med Inform; 2019 Sep; 129():167-174. PubMed ID: 31445251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan.
    Wangdi K; Singhasivanon P; Silawan T; Lawpoolsri S; White NJ; Kaewkungwal J
    Malar J; 2010 Sep; 9():251. PubMed ID: 20813066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan.
    Kuan MM
    PeerJ; 2022; 10():e13117. PubMed ID: 36164599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forecasting Dengue Hotspots Associated With Variation in Meteorological Parameters Using Regression and Time Series Models.
    Patil S; Pandya S
    Front Public Health; 2021; 9():798034. PubMed ID: 34900929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of time-series methods in forecasting the demand for red blood cell transfusion.
    Pereira A
    Transfusion; 2004 May; 44(5):739-46. PubMed ID: 15104656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China.
    Li ZQ; Pan HQ; Liu Q; Song H; Wang JM
    Infect Dis Poverty; 2020 Nov; 9(1):151. PubMed ID: 33148337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China.
    Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y
    PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the impact of the third wave of COVID-19 in India using hybrid statistical machine learning models: A time series forecasting and sentiment analysis approach.
    Mohan S; Solanki AK; Taluja HK; Anuradha ; Singh A
    Comput Biol Med; 2022 May; 144():105354. PubMed ID: 35240374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China.
    Lin Y; Chen M; Chen G; Wu X; Lin T
    BMJ Open; 2015 Dec; 5(12):e008491. PubMed ID: 26656013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of the exponential smoothing model and ARIMA model in prediction of the endemic situation of schistosomiasis in Hunan Province].
    Zhou J; Ren GH; He HB; Hou XY; Deng WC
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2020 Apr; 32(3):236-241. PubMed ID: 32468784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks.
    Wu W; An SY; Guan P; Huang DS; Zhou BS
    BMC Infect Dis; 2019 May; 19(1):414. PubMed ID: 31088391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time series prediction for the epidemic trends of monkeypox using the ARIMA, exponential smoothing, GM (1, 1) and LSTM deep learning methods.
    Wei W; Wang G; Tao X; Luo Q; Chen L; Bao X; Liu Y; Jiang J; Liang H; Ye L
    J Gen Virol; 2023 Apr; 104(4):. PubMed ID: 37022959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada.
    Petukhova T; Ojkic D; McEwen B; Deardon R; Poljak Z
    PLoS One; 2018; 13(6):e0198313. PubMed ID: 29856881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai, China.
    Ren H; Li J; Yuan ZA; Hu JY; Yu Y; Lu YH
    BMC Infect Dis; 2013 Sep; 13():421. PubMed ID: 24010871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.