These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 37311209)

  • 1. Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner.
    Gerardo-Nava JL; Jansen J; Günther D; Klasen L; Thiebes AL; Niessing B; Bergerbit C; Meyer AA; Linkhorst J; Barth M; Akhyari P; Stingl J; Nagel S; Stiehl T; Lampert A; Leube R; Wessling M; Santoro F; Ingebrandt S; Jockenhoevel S; Herrmann A; Fischer H; Wagner W; Schmitt RH; Kiessling F; Kramann R; De Laporte L
    Adv Healthc Mater; 2023 Aug; 12(20):e2301030. PubMed ID: 37311209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired materials for controlling stem cell fate.
    Fisher OZ; Khademhosseini A; Langer R; Peppas NA
    Acc Chem Res; 2010 Mar; 43(3):419-28. PubMed ID: 20043634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids.
    Farahani M; Carthew J; Bhowmik S; Shard C; Nunez-Nescolarde A; Gomez GA; Cadarso VJ; Combes AN; Frith JE
    Biointerphases; 2022 Nov; 17(6):060801. PubMed ID: 36344295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Smart Biomaterials for Tissue Engineering.
    Khan F; Tanaka M
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29267207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications.
    Bae H; Chu H; Edalat F; Cha JM; Sant S; Kashyap A; Ahari AF; Kwon CH; Nichol JW; Manoucheri S; Zamanian B; Wang Y; Khademhosseini A
    J Tissue Eng Regen Med; 2014 Jan; 8(1):1-14. PubMed ID: 22711442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials approach to expand and direct differentiation of stem cells.
    Chai C; Leong KW
    Mol Ther; 2007 Mar; 15(3):467-80. PubMed ID: 17264853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives.
    Calejo MT; Ilmarinen T; Skottman H; Kellomäki M
    Acta Biomater; 2018 Jan; 66():44-66. PubMed ID: 29183847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
    Green DW; Watson GS; Watson JA; Lee DJ; Lee JM; Jung HS
    Acta Biomater; 2016 Sep; 42():33-45. PubMed ID: 27381524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Regenerative Medicine and Biomaterials.
    Şeker Ş; Elçin AE; Elçin YM
    Methods Mol Biol; 2023; 2575():127-152. PubMed ID: 36301474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem cell-based tissue engineering approaches for musculoskeletal regeneration.
    Brown PT; Handorf AM; Jeon WB; Li WJ
    Curr Pharm Des; 2013; 19(19):3429-45. PubMed ID: 23432679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies.
    Ahadian S; Civitarese R; Bannerman D; Mohammadi MH; Lu R; Wang E; Davenport-Huyer L; Lai B; Zhang B; Zhao Y; Mandla S; Korolj A; Radisic M
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 29034591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration.
    Safina I; Embree MC
    Acta Biomater; 2022 Apr; 143():26-38. PubMed ID: 35292413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering approaches to guide stem cell-based organogenesis.
    Gjorevski N; Ranga A; Lutolf MP
    Development; 2014 May; 141(9):1794-804. PubMed ID: 24757002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology.
    Fernández-Colino A; Kiessling F; Slabu I; De Laporte L; Akhyari P; Nagel SK; Stingl J; Reese S; Jockenhoevel S
    Adv Healthc Mater; 2023 Aug; 12(20):e2300991. PubMed ID: 37290055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterials and stem cells for tissue engineering.
    Zhang Z; Gupte MJ; Ma PX
    Expert Opin Biol Ther; 2013 Apr; 13(4):527-40. PubMed ID: 23327471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. At the edge of translation - materials to program cells for directed differentiation.
    Arany PR; Mooney DJ
    Oral Dis; 2011 Apr; 17(3):241-51. PubMed ID: 20860763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review.
    Wang PY; Thissen H; Kingshott P
    Acta Biomater; 2016 Nov; 45():31-59. PubMed ID: 27596488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine.
    Liu Z; Tang M; Zhao J; Chai R; Kang J
    Adv Mater; 2018 Apr; 30(17):e1705388. PubMed ID: 29450919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.