These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37311608)

  • 41. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET).
    Dacres H; Michie M; Wang J; Pfleger KD; Trowell SC
    Biochem Biophys Res Commun; 2012 Aug; 425(3):625-9. PubMed ID: 22877756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Purification and characterization of proteases from Pseudomonas fluorescens and their effects on milk proteins].
    Costa M; Gómez MF; Molina LH; Simpson R; Romero A
    Arch Latinoam Nutr; 2002 Jun; 52(2):160-6. PubMed ID: 12184150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic Organization of the
    Maier C; Huptas C; von Neubeck M; Scherer S; Wenning M; Lücking G
    Front Microbiol; 2020; 11():1190. PubMed ID: 32587583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from north China.
    Xin L; Zhang L; Meng Z; Lin K; Zhang S; Han X; Yi H; Cui Y
    J Dairy Sci; 2017 Oct; 100(10):7802-7811. PubMed ID: 28780114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unique response to heat of extracellular protease of Pseudomonas fluorescens M5.
    Marshall RT; Marstiller JK
    J Dairy Sci; 1981 Jul; 64(7):1545-50. PubMed ID: 6795248
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Proteolytic activities of Ps. fluorescens in milk: determination with azocasein in comparison with HPA].
    Kroll S; Klostermeyer H
    Z Lebensm Unters Forsch; 1984; 178(3):179-86. PubMed ID: 6426187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants.
    Dogan B; Boor KJ
    Appl Environ Microbiol; 2003 Jan; 69(1):130-8. PubMed ID: 12513987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Milk fat influences proteolytic enzyme activity of dairy Pseudomonas species.
    Zhang D; Palmer J; Teh KH; Calinisan MMA; Flint S
    Int J Food Microbiol; 2020 May; 320():108543. PubMed ID: 32028204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ELISA to detect proteolysis of ultrahigh-temperature milk upon storage.
    Dupont D; Lugand D; Rolet-Repecaud O; Degelaen J
    J Agric Food Chem; 2007 Aug; 55(17):6857-62. PubMed ID: 17645342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic inhibition of Pseudomonas fluorescens growth and proteases activities via sodium chlorite-based oxyhalogen.
    Abolmaaty A; Abdelkader RMM; Amin DH
    World J Microbiol Biotechnol; 2022 Dec; 39(1):33. PubMed ID: 36469174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rational design of novel red-shifted BRET pairs: Platforms for real-time single-chain protease biosensors.
    Gammon ST; Villalobos VM; Roshal M; Samrakandi M; Piwnica-Worms D
    Biotechnol Prog; 2009; 25(2):559-69. PubMed ID: 19330851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heat-stable protease from Pseudomonas fluorescens T16: purification by affinity column chromatography and characterization.
    Patel TR; Jackman DM; Bartlett FM
    Appl Environ Microbiol; 1983 Aug; 46(2):333-7. PubMed ID: 6414369
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry.
    Wu N; Dacres H; Anderson A; Trowell SC; Zhu Y
    PLoS One; 2014; 9(2):e88399. PubMed ID: 24551097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BRET-Based Self-Cleaving Biosensors for SARS-CoV-2 3CLpro Inhibitor Discovery.
    Hou N; Peng C; Zhang L; Zhu Y; Hu Q
    Microbiol Spectr; 2022 Aug; 10(4):e0255921. PubMed ID: 35758897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Purification and properties of heat-stable extracellular protease from Pseudomonads fluorescens BJ-10.
    Zhang S; Lv J
    J Food Sci Technol; 2014 Jun; 51(6):1185-90. PubMed ID: 24876654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lactose oxidase: Enzymatic control of Pseudomonas to delay age gelation in UHT milk.
    Rivera Flores VK; DeMarsh TA; Alcaine SD
    J Dairy Sci; 2021 Mar; 104(3):2758-2772. PubMed ID: 33358807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of the production of Bacillus cereus protease and its effect on the quality of ultra-high temperature-sterilized whole milk.
    Yang X; Wang Z; Zhang C; Wang L; Pang L; Zhang D; Man C; Jiang Y
    J Dairy Sci; 2021 Jun; 104(6):6577-6587. PubMed ID: 33741157
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteolysis in milk: the significance of proteinases originating from milk leucocytes and a comparison of the action of leucocyte, bacterial and natural milk proteinases on casein.
    Grieve PA; Kitchen BJ
    J Dairy Res; 1985 Feb; 52(1):101-12. PubMed ID: 3157713
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heat-stable proteases from psychrotrophic pseudomonads: comparison of immunological properties.
    Jackman DM; Bartlett FM; Patel TR
    Appl Environ Microbiol; 1983 Jul; 46(1):6-12. PubMed ID: 6193760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of a Multiplex PCR Assay for Detection of Pseudomonas fluorescens with Biofilm Formation Ability.
    Xu Y; Chen W; You C; Liu Z
    J Food Sci; 2017 Oct; 82(10):2337-2342. PubMed ID: 28950041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.