BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37311953)

  • 21. The biological functions and mechanism of miR‑212 in prostate cancer proliferation, migration and invasion via targeting Engrailed-2.
    Zhou Y; Ji Z; Yan W; Zhou Z; Li H
    Oncol Rep; 2017 Sep; 38(3):1411-1419. PubMed ID: 28713997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of AR-regulated lncRNA TMPO-AS1 correlates with tumor progression and poor prognosis in prostate cancer.
    Huang W; Su X; Yan W; Kong Z; Wang D; Huang Y; Zhai Q; Zhang X; Wu H; Li Y; Li T; Wan X
    Prostate; 2018 Dec; 78(16):1248-1261. PubMed ID: 30105831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SP1-mediated upregulation of lncRNA SNHG4 functions as a ceRNA for miR-377 to facilitate prostate cancer progression through regulation of ZIC5.
    Wang ZY; Duan Y; Wang P
    J Cell Physiol; 2020 Apr; 235(4):3916-3927. PubMed ID: 31608997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MTSS1 hypermethylation is associated with prostate cancer progression.
    Chen J; Huang L; Zhu Q; Wang Z; Tang Z
    J Cell Physiol; 2020 Mar; 235(3):2687-2697. PubMed ID: 31541465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the Expression and Prognostic Value of Annexin Family Proteins in Bladder Cancer.
    Wu W; Jia G; Chen L; Liu H; Xia S
    Front Genet; 2021; 12():731625. PubMed ID: 34484309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Annexin A6 inhibits Ras signalling in breast cancer cells.
    Vilá de Muga S; Timpson P; Cubells L; Evans R; Hayes TE; Rentero C; Hegemann A; Reverter M; Leschner J; Pol A; Tebar F; Daly RJ; Enrich C; Grewal T
    Oncogene; 2009 Jan; 28(3):363-77. PubMed ID: 18850003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MiR-206 inhibits proliferation and migration of prostate cancer cells by targeting CXCL11.
    Wang Y; Xu H; Si L; Li Q; Zhu X; Yu T; Gang X
    Prostate; 2018 May; 78(7):479-490. PubMed ID: 29542173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies.
    Korolkova OY; Widatalla SE; Williams SD; Whalen DS; Beasley HK; Ochieng J; Grewal T; Sakwe AM
    Cells; 2020 Aug; 9(8):. PubMed ID: 32784650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BAIAP2L2 facilitates the malignancy of prostate cancer (PCa) via VEGF and apoptosis signaling pathways.
    Song Y; Zhuang G; Li J; Zhang M
    Genes Genomics; 2021 Apr; 43(4):421-432. PubMed ID: 33646530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing roles of small nucleolar RNA host gene 25 from clinical, molecular target and tumor formation in prostate cancer.
    Liu Z; Ke S; Wang Q; Gu X; Zhai G; Shao H; He M; Guo J
    Exp Cell Res; 2023 Aug; 429(2):113686. PubMed ID: 37307941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxia-Inducible Expression of Annexin A6 Enhances the Resistance of Triple-Negative Breast Cancer Cells to EGFR and AR Antagonists.
    Williams SD; Smith TM; Stewart LV; Sakwe AM
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LINC01146/F11R facilitates growth and metastasis of prostate cancer under the regulation of TGF-β.
    Guo X; Gu Y; Guo C; Pei L; Hao C
    J Steroid Biochem Mol Biol; 2023 Jan; 225():106193. PubMed ID: 36162632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pan-cancer evidence of prognosis, immune infiltration, and immunotherapy efficacy for annexin family using multi-omics data.
    Shen C; Zhang S; Zhang Z; Yang S; Zhang Y; Lin Y; Fu C; Li Z; Wu Z; Wang Z; Li Z; Guo J; Li P; Hu H
    Funct Integr Genomics; 2023 Jun; 23(3):211. PubMed ID: 37358720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MAPK8IP2 is a potential prognostic biomarker and promote tumor progression in prostate cancer.
    Zeng Z; He W; Jiang Y; Jiang H; Cheng X; Deng W; Zhou X; Zhang C; Wang G
    BMC Cancer; 2022 Nov; 22(1):1162. PubMed ID: 36357836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TUG1 promotes the development of prostate cancer by regulating RLIM.
    Guo BH; Zhao Q; Li HY
    Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1926-1933. PubMed ID: 30915735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone methyltransferase SUV39H2 regulates apoptosis and chemosensitivity in prostate cancer through AKT/FOXO signaling pathway.
    Sun D; Guo J; Liang W; Chen Y; Wei S; Li A; Wang L; Chen X
    Med Oncol; 2024 Jan; 41(2):44. PubMed ID: 38170382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis.
    Zhang D; Yang XJ; Luo QD; Xue L; Chong T
    Cancer Gene Ther; 2022 Jul; 29(7):1001-1011. PubMed ID: 34799723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GATA binding protein 5-mediated transcriptional activation of transmembrane protein 100 suppresses cell proliferation, migration and epithelial-to-mesenchymal transition in prostate cancer DU145 cells.
    Liu J; Lin F; Wang X; Li C; Qi Q
    Bioengineered; 2022 Apr; 13(4):7972-7983. PubMed ID: 35358005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro.
    Wang L; Zhang J; Yang X; Chang YW; Qi M; Zhou Z; Zhang J; Han B
    Prostate Cancer Prostatic Dis; 2013 Dec; 16(4):301-7. PubMed ID: 23917306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. eIF5B regulates the expression of PD-L1 in prostate cancer cells by interacting with Wig1.
    Li Q; Xiao M; Shi Y; Hu J; Bi T; Wang C; Yan L; Li X
    BMC Cancer; 2021 Sep; 21(1):1022. PubMed ID: 34525951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.