These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37312016)

  • 1. Recent Research Progress into Zinc Ion Battery Solid-Electrolyte Interfaces.
    Li L; Jia S; Cheng Z; Zhang C
    ChemSusChem; 2023 Oct; 16(20):e202300632. PubMed ID: 37312016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid Electrolyte Interface in Zn-Based Battery Systems.
    Wang X; Li X; Fan H; Ma L
    Nanomicro Lett; 2022 Oct; 14(1):205. PubMed ID: 36261666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
    Ho VC; Lim H; Kim MJ; Mun J
    Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic solid-electrolyte interface layers for Zn metal anodes.
    He Z; Huang W; Xiong F; Tan S; Wu T; Wang R; Ducati C; De Volder M; An Q
    Chem Commun (Camb); 2024 Jul; 60(54):6847-6859. PubMed ID: 38872581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Solid Electrolyte Interphase for Aqueous Zinc Batteries.
    Li Y; Yu Z; Huang J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202309957. PubMed ID: 37596841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Graphene-Based Materials for Zinc-Ion Batteries.
    Li L; Yue S; Jia S; Wang C; Zhang D
    Chem Rec; 2024 Apr; 24(4):e202300341. PubMed ID: 38180284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries.
    Yuan D; Manalastas W; Zhang L; Chan JJ; Meng S; Chen Y; Srinivasan M
    ChemSusChem; 2019 Nov; 12(21):4889-4900. PubMed ID: 31475452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additives for Aqueous Zinc-Ion Batteries: Recent Progress, Mechanism Analysis, and Future Perspectives.
    Cao J; Zhao F; Guan W; Yang X; Zhao Q; Gao L; Ren X; Wu G; Liu A
    Small; 2024 Apr; ():e2400221. PubMed ID: 38586921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating Interfacial Ion Migration via Wool Keratin Mediated Biogel Electrolyte toward Robust Flexible Zn-Ion Batteries.
    Shao Y; Zhao J; Hu W; Xia Z; Luo J; Zhou Y; Zhang L; Yang X; Ma N; Yang D; Shi Q; Sun J; Zhang L; Hui J; Shao Y
    Small; 2022 Mar; 18(10):e2107163. PubMed ID: 35112793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Strategies for Separators in Zinc-Ion Batteries.
    Li L; Jia S; Cheng Z; Zhang C
    ChemSusChem; 2023 Apr; 16(8):e202202330. PubMed ID: 36866862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrolyte Engineering Enables High Performance Zinc-Ion Batteries.
    Wang Y; Wang Z; Yang F; Liu S; Zhang S; Mao J; Guo Z
    Small; 2022 Oct; 18(43):e2107033. PubMed ID: 35191602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries.
    Huang S; Zhu J; Tian J; Niu Z
    Chemistry; 2019 Nov; 25(64):14480-14494. PubMed ID: 31407398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wide-Temperature Lithium-Ion Batteries.
    Liu G; Cao Z; Wang P; Ma Z; Zou Y; Sun Q; Cheng H; Cavallo L; Li S; Li Q; Ming J
    Adv Sci (Weinh); 2022 Sep; 9(26):e2201893. PubMed ID: 35843866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Healing Solid Polymer Electrolyte with High Ion Conductivity and Super Stretchability for All-Solid Zinc-Ion Batteries.
    Liu D; Tang Z; Luo L; Yang W; Liu Y; Shen Z; Fan XH
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36320-36329. PubMed ID: 34309364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solid-Electrolyte-Interphase, Current Collectors, Binders, and Separators.
    Ni Q; Kim B; Wu C; Kang K
    Adv Mater; 2022 May; 34(20):e2108206. PubMed ID: 34905643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Cost Zinc-Alginate-Based Hydrogel-Polymer Electrolytes for Dendrite-Free Zinc-Ion Batteries with High Performances and Prolonged Lifetimes.
    Zheng Z; Cao H; Shi W; She C; Zhou X; Liu L; Zhu Y
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ analytical techniques for battery interface analysis.
    Tripathi AM; Su WN; Hwang BJ
    Chem Soc Rev; 2018 Feb; 47(3):736-851. PubMed ID: 29308803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.