These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 37312189)
1. Perspectives of users for a future interactive wearable system for upper extremity rehabilitation following stroke: a qualitative study. Yang CL; Chui R; Mortenson WB; Servati P; Servati A; Tashakori A; Eng JJ J Neuroeng Rehabil; 2023 Jun; 20(1):77. PubMed ID: 37312189 [TBL] [Abstract][Full Text] [Related]
2. The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review. Kim GJ; Parnandi A; Eva S; Schambra H Disabil Rehabil; 2022 Oct; 44(20):6119-6138. PubMed ID: 34328803 [TBL] [Abstract][Full Text] [Related]
3. Requirements for home-based upper extremity rehabilitation using wearable motion sensors for stroke patients: a user-centred approach. Langerak AJ; Regterschot GRH; Selles RW; Meskers CGM; Evers M; Ribbers GM; van Beijnum BJF; Bussmann JBJ Disabil Rehabil Assist Technol; 2024 May; 19(4):1392-1404. PubMed ID: 36905631 [TBL] [Abstract][Full Text] [Related]
4. Clinicians' perceptions of a potential wearable device for capturing upper limb activity post-stroke: a qualitative focus group study. Simpson LA; Menon C; Hodgson AJ; Ben Mortenson W; Eng JJ J Neuroeng Rehabil; 2021 Sep; 18(1):135. PubMed ID: 34496894 [TBL] [Abstract][Full Text] [Related]
5. Quantitative measurement of finger usage in stroke hemiplegia using ring-shaped wearable devices. Yamamoto N; Matsumoto T; Sudo T; Miyashita M; Kondo T J Neuroeng Rehabil; 2023 Jun; 20(1):73. PubMed ID: 37280649 [TBL] [Abstract][Full Text] [Related]
6. Perspectives on the prospective development of stroke-specific lower extremity wearable monitoring technology: a qualitative focus group study with physical therapists and individuals with stroke. Louie DR; Bird ML; Menon C; Eng JJ J Neuroeng Rehabil; 2020 Feb; 17(1):31. PubMed ID: 32098628 [TBL] [Abstract][Full Text] [Related]
7. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system. Ranganathan R; Wang R; Dong B; Biswas S Physiol Meas; 2017 Nov; 38(12):2222-2234. PubMed ID: 29099724 [TBL] [Abstract][Full Text] [Related]
8. Task selection for a sensor-based, wearable, upper limb training device for stroke survivors: a multi-stage approach. Turk R; Whitall J; Meagher C; Stokes M; Roberts S; Woodham S; Clatworthy P; Burridge J Disabil Rehabil; 2023 May; 45(9):1480-1487. PubMed ID: 35476616 [TBL] [Abstract][Full Text] [Related]
9. The Rehabilitation Effects of Myoelectric Powered Wearable Orthotics on Improving Upper Extremity Function in Persons with SCI. Androwis GJ; Engler A; Rana S; Kirshblum S; Yue GH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4944-4948. PubMed ID: 34892317 [TBL] [Abstract][Full Text] [Related]
10. An exploratory analysis of the self-reported goals of individuals with chronic upper-extremity paresis following stroke. Waddell KJ; Birkenmeier RL; Bland MD; Lang CE Disabil Rehabil; 2016; 38(9):853-7. PubMed ID: 26146964 [TBL] [Abstract][Full Text] [Related]
12. Interactive wearable systems for upper body rehabilitation: a systematic review. Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228 [TBL] [Abstract][Full Text] [Related]
13. Technology-Based Compensation Assessment and Detection of Upper Extremity Activities of Stroke Survivors: Systematic Review. Wang X; Fu Y; Ye B; Babineau J; Ding Y; Mihailidis A J Med Internet Res; 2022 Jun; 24(6):e34307. PubMed ID: 35699982 [TBL] [Abstract][Full Text] [Related]
14. Clinical Features to Predict the Use of a sEMG Wearable Device (REMO Pregnolato G; Rimini D; Baldan F; Maistrello L; Salvalaggio S; Celadon N; Ariano P; Pirri CF; Turolla A Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981992 [TBL] [Abstract][Full Text] [Related]
15. Wearable Technologies for Monitoring Upper Extremity Functions During Daily Life in Neurologically Impaired Individuals. Proietti T; Bandini A IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2737-2748. PubMed ID: 39074020 [TBL] [Abstract][Full Text] [Related]
16. Decoding hand and wrist movement intention from chronic stroke survivors with hemiparesis using a user-friendly, wearable EMG-based neural interface. Meyers EC; Gabrieli D; Tacca N; Wengerd L; Darrow M; Schlink BR; Baumgart I; Friedenberg DA J Neuroeng Rehabil; 2024 Jan; 21(1):7. PubMed ID: 38218901 [TBL] [Abstract][Full Text] [Related]
17. Impacts of Sensation, Perception, and Motor Abilities of the Ipsilesional Upper Limb on Hand Functions in Unilateral Stroke: Quantifications From Biomechanical and Functional Perspectives. Hsu HY; Ke CW; Kuan TS; Yang HC; Tsai CL; Kuo LC PM R; 2018 Feb; 10(2):146-153. PubMed ID: 28729058 [TBL] [Abstract][Full Text] [Related]
18. Preliminary Examination of the Ability of a New Wearable Device to Capture Functional Hand Activity After Stroke. Simpson LA; Mow A; Menon C; Eng JJ Stroke; 2019 Dec; 50(12):3643-3646. PubMed ID: 31662119 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Upper Limb Movement Impairments after Stroke Using Wearable Inertial Sensing. Schwarz A; Bhagubai MMC; Wolterink G; Held JPO; Luft AR; Veltink PH Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846958 [TBL] [Abstract][Full Text] [Related]
20. Upper extremity self-efficacy correlates with daily hand-use of individuals with high functional capacity post-stroke. Goldman-Gerber V; Schwartz I; Rand D Disabil Rehabil; 2023 Jul; 45(14):2301-2306. PubMed ID: 35722769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]