BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37312816)

  • 1. Speed of Sound Measurements in Helium at Pressures from 15 to 100 MPa and Temperatures from 273 to 373 K.
    Wedler C; Trusler JPM
    J Chem Eng Data; 2023 Jun; 68(6):1305-1312. PubMed ID: 37312816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eighth-order virial equation of state and speed-of-sound measurements for krypton.
    El Hawary A; Hellmann R; Meier K; Busemann H
    J Chem Phys; 2019 Oct; 151(15):154303. PubMed ID: 31640348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio virial equation of state for argon using a new nonadditive three-body potential.
    Jäger B; Hellmann R; Bich E; Vogel E
    J Chem Phys; 2011 Aug; 135(8):084308. PubMed ID: 21895186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The speed of sound and derived thermodynamic properties of pure water at temperatures between (253 and 473) K and at pressures up to 400 MPa.
    Lin CW; Trusler JP
    J Chem Phys; 2012 Mar; 136(9):094511. PubMed ID: 22401456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speed of Sound Measurements of Binary Mixtures of 1,1,1,2-Tetrafluoroethane (R-134a), 2,3,3,3-Tetrafluoropropene (R-1234yf), and
    Rowane AJ; Perkins RA
    J Chem Eng Data; 2022; 67(6):. PubMed ID: 37056993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-Phase Speed of Sound and Vapor-Phase Density of Difluoromethane.
    Rowane AJ; Rasmussen EG; McLinden MO
    J Chem Eng Data; 2022; 67(10):. PubMed ID: 37056870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The compressibility and the capacitance coefficient of helium-oxygen atmospheres.
    Imbert G; Dejours P; Hildwein G
    Undersea Biomed Res; 1982 Dec; 9(4):305-14. PubMed ID: 7168095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speed-of-Sound Measurements in (Argon + Carbon Dioxide) over the Temperature Range from (275 to 500) K at Pressures up to 8 MPa.
    Wegge R; McLinden MO; Perkins RA; Richter M; Span R
    J Chem Thermodyn; 2016 Aug; 99():54-64. PubMed ID: 27458321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dual-Path Pulse-Echo Instrument for Liquid-Phase Speed of Sound and Measurements on
    McLinden MO; Perkins RA
    Ind Eng Chem Res; 2023 Aug; 62(31):12381-12406. PubMed ID: 37576937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Third density and acoustic virial coefficients of helium isotopologues from ab initio calculations.
    Binosi D; Garberoglio G; Harvey AH
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38912675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly-accurate density-virial-coefficient values for helium, neon, and argon at 0.01 
    Gaiser C; Fellmuth B
    J Chem Phys; 2019 Apr; 150(13):134303. PubMed ID: 30954050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speed of Sound Measurements of Binary Mixtures of Difluoromethane (R-32) with 2,3,3,3-Tetrafluoropropene (R-1234yf) or
    Rowane AJ; Perkins RA
    Int J Thermophys; 2022; 43(4):. PubMed ID: 37056469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa.
    Blahut A; Hykl J; Peukert P; Vinš V; Hrubý J
    J Chem Phys; 2019 Jul; 151(3):034505. PubMed ID: 31325943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revised Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications.
    Lemmon EW; Huber ML; Leachman JW
    J Res Natl Inst Stand Technol; 2008; 113(6):341-50. PubMed ID: 27096133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path-integral Mayer-sampling calculations of the quantum Boltzmann contribution to virial coefficients of helium-4.
    Shaul KR; Schultz AJ; Kofke DA
    J Chem Phys; 2012 Nov; 137(18):184101. PubMed ID: 23163358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Calculation of the Critical Parameters of Classical Helium.
    Messerly RA; Gokul N; Schultz AJ; Kofke DA; Harvey AH
    J Chem Eng Data; 2019; 65(3):. PubMed ID: 33041367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab Initio Interatomic Potentials and the Classical Molecular Simulation Prediction of the Thermophysical Properties of Helium.
    Deiters UK; Sadus RJ
    J Phys Chem B; 2020 Mar; 124(11):2268-2276. PubMed ID: 32081009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-Principles Calculation of the Third Virial Coefficient of Helium.
    Garberoglio G; Harvey AH
    J Res Natl Inst Stand Technol; 2009; 114(5):249-62. PubMed ID: 27504226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved First-Principles Calculation of the Third Virial Coefficient of Helium.
    Garberoglio G; Moldover MR; Harvey AH
    J Res Natl Inst Stand Technol; 2011; 116(4):729-42. PubMed ID: 26989595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonadditive three-body potential and third to eighth virial coefficients of carbon dioxide.
    Hellmann R
    J Chem Phys; 2017 Feb; 146(5):054302. PubMed ID: 28178823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.