These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37312973)

  • 1. Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients.
    van den Berg I; Savenije MHF; Teunissen FR; van de Pol SMG; Rasing MJA; van Melick HHE; Brink WM; de Boer JCJ; van den Berg CAT; van der Voort van Zyp JRN
    Phys Imaging Radiat Oncol; 2023 Apr; 26():100453. PubMed ID: 37312973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrater agreement of contouring of the neurovascular bundles and internal pudendal arteries in neurovascular-sparing magnetic resonance-guided radiotherapy for localized prostate cancer.
    Teunissen FR; Wortel RC; Wessels FJ; Claes A; van de Pol SMG; Rasing MJA; Meijer RP; van Melick HHE; de Boer JCJ; Verkooijen HM; van der Voort van Zyp JRN
    Clin Transl Radiat Oncol; 2022 Jan; 32():29-34. PubMed ID: 34825071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic AI-based contouring of prostate MRI for online adaptive radiotherapy.
    Nachbar M; Lo Russo M; Gani C; Boeke S; Wegener D; Paulsen F; Zips D; Roque T; Paragios N; Thorwarth D
    Z Med Phys; 2024 May; 34(2):197-207. PubMed ID: 37263911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy.
    Savenije MHF; Maspero M; Sikkes GG; van der Voort van Zyp JRN; T J Kotte AN; Bol GH; T van den Berg CA
    Radiat Oncol; 2020 May; 15(1):104. PubMed ID: 32393280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human factors in the clinical implementation of deep learning-based automated contouring of pelvic organs at risk for MRI-guided radiotherapy.
    Abdulkadir Y; Luximon D; Morris E; Chow P; Kishan AU; Mikaeilian A; Lamb JM
    Med Phys; 2023 Oct; 50(10):5969-5977. PubMed ID: 37646527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurovascular-Sparing MR-Guided Adaptive Radiotherapy in Prostate Cancer; Defining the Potential Population for Erectile Function-Sparing Treatment.
    Teunissen FR; van der Voort van Zyp JRN; Verkooijen HM; Wortel RC
    J Sex Med; 2022 Jul; 19(7):1196-1200. PubMed ID: 35618631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An open-source nnU-net algorithm for automatic segmentation of MRI scans in the male pelvis for adaptive radiotherapy.
    Lorenzen EL; Celik B; Sarup N; Dysager L; Christiansen RL; Bertelsen AS; Bernchou U; Agergaard SN; Konrad ML; Brink C; Mahmood F; Schytte T; Nyborg CJ
    Front Oncol; 2023; 13():1285725. PubMed ID: 38023233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of neurovascular bundle on mri using deep learning based topological modulated network.
    Lei Y; Wang T; Roper J; Tian S; Patel P; Bradley JD; Jani AB; Liu T; Yang X
    Med Phys; 2023 Sep; 50(9):5479-5488. PubMed ID: 36939189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation.
    Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C
    Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Use of a Commercial Artificial Intelligence-Based Software for Autocontouring in Radiation Therapy: Geometric Performance and Dosimetric Impact.
    Hoque SMH; Pirrone G; Matrone F; Donofrio A; Fanetti G; Caroli A; Rista RS; Bortolus R; Avanzo M; Drigo A; Chiovati P
    Cancers (Basel); 2023 Dec; 15(24):. PubMed ID: 38136281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiotherapy.
    Li Z; Zhang W; Li B; Zhu J; Peng Y; Li C; Zhu J; Zhou Q; Yin Y
    Radiother Oncol; 2022 Dec; 177():222-230. PubMed ID: 36375561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning magnetic resonance imaging-based automatic segmentation for organs-at-risk in the brain: Accuracy and impact on dose distribution.
    Turcas A; Leucuta D; Balan C; Clementel E; Gheara C; Kacso A; Kelly SM; Tanasa D; Cernea D; Achimas-Cadariu P
    Phys Imaging Radiat Oncol; 2023 Jul; 27():100454. PubMed ID: 37333894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases.
    Zhong Y; Yang Y; Fang Y; Wang J; Hu W
    Front Oncol; 2021; 11():638197. PubMed ID: 34026615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
    Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D
    Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pair of deep learning auto-contouring models for prostate cancer patients injected with a radio-transparent versus radiopaque hydrogel spacer.
    Wang Y; Boyd G; Zieminski S; Kamran SC; Zietman AL; Miyamoto DT; Kirk MC; Efstathiou JA
    Med Phys; 2023 Jun; 50(6):3324-3337. PubMed ID: 36940384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach.
    Liang F; Qian P; Su KH; Baydoun A; Leisser A; Van Hedent S; Kuo JW; Zhao K; Parikh P; Lu Y; Traughber BJ; Muzic RF
    Artif Intell Med; 2018 Aug; 90():34-41. PubMed ID: 30054121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.