These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37313174)

  • 1. Influence of pH and NaCl on the rejection of glycine and triglycine in binary solutions for desalination with diananofiltration.
    Labanda J; Shahgodari S; Llorens J
    Heliyon; 2023 Jun; 9(6):e16797. PubMed ID: 37313174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Modeling Study of the Nanofiltration of Alcohol-Based Molecules and Amino Acids by Commercial Membranes.
    Shahgodari S; Labanda J; Llorens J
    Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: Transport modeling and pore radius estimation.
    Taheri E; Hadi S; Amin MM; Ebrahimi A; Fatehizadeh A; Aminabhavi TM
    J Environ Manage; 2020 Oct; 271():111005. PubMed ID: 32778290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource recovery from RO concentrate using nanofiltration: Impact of active layer thickness on performance.
    Du Y; Pramanik BK; Zhang Y; Jegatheesan V
    Environ Res; 2023 Aug; 231(Pt 3):116265. PubMed ID: 37263466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of single salt rejection in PES/CMS based membranes.
    Qadir D; Idris A; Nasir R; Abdul Mannan H; Sharif R; Mukhtar H
    Chemosphere; 2023 Jan; 311(Pt 1):136987. PubMed ID: 36306961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical rejection of fifty-four antineoplastic drugs by different nanofiltration membranes.
    Gouveia TIA; Alves A; Santos MSF
    Environ Sci Pollut Res Int; 2023 Oct; 30(48):106099-106111. PubMed ID: 37723401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of Spiegler⁻Kedem and Steric Hindrance Pore Models for Analyzing Nanofiltration Membrane Performance for Smart Water Production.
    Nair RR; Protasova E; Strand S; Bilstad T
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30200672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.
    Rajendran RM; Garg S; Bajpai S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview.
    Suhalim NS; Kasim N; Mahmoudi E; Shamsudin IJ; Mohammad AW; Mohamed Zuki F; Jamari NL
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafiltration membrane for effective removal of chromium ions from potable water.
    Muthumareeswaran MR; Alhoshan M; Agarwal GP
    Sci Rep; 2017 Jan; 7():41423. PubMed ID: 28134266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentials of using nanofiltration to recover phosphorus from sewage sludge.
    Niewersch C; Koh CN; Wintgens T; Melin T; Schaum C; Cornel P
    Water Sci Technol; 2008; 57(5):707-14. PubMed ID: 18401142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Nanofiltration Membranes for Pure Lactic Acid Permeability.
    Cabrera-González M; Ahmed A; Maamo K; Salem M; Jordan C; Harasek M
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of steric, electric, and dielectric effects on membrane potential.
    Lanteri Y; Szymczyk A; Fievet P
    Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced modelling and experimental validation of ultra-low pressure reverse osmosis membrane system for treatment of synthetic brackish water.
    Norizam SS; Hussain MA; Junaidi MUM
    Water Sci Technol; 2021 Nov; 84(10-11):3372-3387. PubMed ID: 34850734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density.
    Zhang H; Quan X; Fan X; Yi G; Chen S; Yu H; Chen Y
    Environ Sci Technol; 2019 Jan; 53(2):868-877. PubMed ID: 30540165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.