BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 37313405)

  • 1. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy.
    Xu S; Wang C; Yang L; Wu J; Li M; Xiao P; Xu Z; Xu Y; Wang K
    Front Immunol; 2023; 14():1199631. PubMed ID: 37313405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers.
    Zhang H; Liu L; Liu J; Dang P; Hu S; Yuan W; Sun Z; Liu Y; Wang C
    Mol Cancer; 2023 Mar; 22(1):58. PubMed ID: 36941614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression.
    Pu Y; Ji Q
    Front Immunol; 2022; 13():874589. PubMed ID: 35592338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
    Pérez-Ruiz E; Melero I; Kopecka J; Sarmento-Ribeiro AB; García-Aranda M; De Las Rivas J
    Drug Resist Updat; 2020 Dec; 53():100718. PubMed ID: 32736034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy.
    Li W; Wu F; Zhao S; Shi P; Wang S; Cui D
    Cytokine Growth Factor Rev; 2022 Oct; 67():49-57. PubMed ID: 35871139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting tumor-associated macrophages for cancer immunotherapy.
    Cao X; Lai SWT; Chen S; Wang S; Feng M
    Int Rev Cell Mol Biol; 2022; 368():61-108. PubMed ID: 35636930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. It takes two to tango: the role of tumor-associated macrophages in T cell-directed immune checkpoint blockade therapy.
    Sheban F
    Front Immunol; 2023; 14():1183578. PubMed ID: 37359522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. M2 subtype tumor associated macrophages (M2-TAMs) infiltration predicts poor response rate of immune checkpoint inhibitors treatment for prostate cancer.
    JiaWei Z; ChunXia D; CunDong L; Yang L; JianKun Y; HaiFeng D; Cheng Y; ZhiPeng H; HongYi W; DeYing L; ZhiJian L; Xiao X; QiZhao Z; KangYi X; WenBing G; Ming X; JunHao Z; JiMing B; ShanChao Z; MingKun C
    Ann Med; 2021 Dec; 53(1):730-740. PubMed ID: 34032524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy.
    Wei G; Zhang H; Zhao H; Wang J; Wu N; Li L; Wu J; Zhang D
    Cancer Lett; 2021 Jul; 511():68-76. PubMed ID: 33957184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning enemies into allies-reprogramming tumor-associated macrophages for cancer therapy.
    Molgora M; Colonna M
    Med; 2021 Jun; 2(6):666-681. PubMed ID: 34189494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting immune checkpoints in hematological malignancies.
    Salik B; Smyth MJ; Nakamura K
    J Hematol Oncol; 2020 Aug; 13(1):111. PubMed ID: 32787882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting tumor-associated macrophages to synergize tumor immunotherapy.
    Xiang X; Wang J; Lu D; Xu X
    Signal Transduct Target Ther; 2021 Feb; 6(1):75. PubMed ID: 33619259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diurnal Expression of PD-1 on Tumor-Associated Macrophages Underlies the Dosing Time-Dependent Antitumor Effects of the PD-1/PD-L1 Inhibitor BMS-1 in B16/BL6 Melanoma-Bearing Mice.
    Tsuruta A; Shiiba Y; Matsunaga N; Fujimoto M; Yoshida Y; Koyanagi S; Ohdo S
    Mol Cancer Res; 2022 Jun; 20(6):972-982. PubMed ID: 35190830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors.
    Choo YW; Kang M; Kim HY; Han J; Kang S; Lee JR; Jeong GJ; Kwon SP; Song SY; Go S; Jung M; Hong J; Kim BS
    ACS Nano; 2018 Sep; 12(9):8977-8993. PubMed ID: 30133260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy.
    Ma Z; Yang M; Foda MF; Zhang K; Li S; Liang H; Zhao Y; Han H
    ACS Nano; 2022 Oct; 16(10):17389-17401. PubMed ID: 36166666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks.
    Meng L; Wu H; Wu J; Ding P; He J; Sang M; Liu L
    Cell Death Dis; 2024 Jan; 15(1):3. PubMed ID: 38177102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation.
    Wu M; Huang Q; Xie Y; Wu X; Ma H; Zhang Y; Xia Y
    J Hematol Oncol; 2022 Mar; 15(1):24. PubMed ID: 35279217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy.
    Li YR; Yu Y; Kramer A; Hon R; Wilson M; Brown J; Yang L
    Cells; 2022 May; 11(9):. PubMed ID: 35563889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma.
    Truxova I; Cibula D; Spisek R; Fucikova J
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36822672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.