These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37313471)

  • 1. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition.
    Xue H; Wang D; Jin M; Gao H; Wang X; Xia L; Li D; Sun K; Wang H; Dong X; Zhang C; Cong F; Lin J
    Microsyst Nanoeng; 2023; 9():79. PubMed ID: 37313471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes.
    Liu J; Lin S; Li W; Zhao Y; Liu D; He Z; Wang D; Lei M; Hong B; Wu H
    Research (Wash D C); 2022; 2022():9830457. PubMed ID: 35356767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 4. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface.
    Hsieh JC; Alawieh H; Li Y; Iwane F; Zhao L; Anderson R; Abdullah SI; Kevin Tang KW; Wang W; Pyatnitskiy I; Jia Y; Millán JDR; Wang H
    Biosens Bioelectron; 2022 Dec; 218():114756. PubMed ID: 36209529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfort.
    Vasconcelos B; Fiedler P; Machts R; Haueisen J; Fonseca C
    Front Neurosci; 2021; 15():748100. PubMed ID: 34733134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-adhesive solid-gel electrode for a non-invasive brain-machine interface.
    Toyama S; Takano K; Kansaku K
    Front Neurol; 2012; 3():114. PubMed ID: 22826701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive Hydrogel Tapes for Tripolar EEG: A Promising Solution to Paste-Related Challenges.
    Considine C; Besio W
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39001001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.
    Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes.
    Mathewson KE; Harrison TJ; Kizuk SA
    Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel flexible hydrogel electrode with a strong moisturizing ability for long-term EEG recording.
    Shen G; Gao K; Zhao N; Yi Z; Jiang C; Yang B; Liu J
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34883478
    [No Abstract]   [Full Text] [Related]  

  • 13. A Dry EEG-System for Scientific Research and Brain-Computer Interfaces.
    Zander TO; Lehne M; Ihme K; Jatzev S; Correia J; Kothe C; Picht B; Nijboer F
    Front Neurosci; 2011; 5():53. PubMed ID: 21647345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring.
    Zhang L; Kumar KS; He H; Cai CJ; He X; Gao H; Yue S; Li C; Seet RC; Ren H; Ouyang J
    Nat Commun; 2020 Sep; 11(1):4683. PubMed ID: 32943621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of dry and gel based electrodes for p300 brain-computer interfaces.
    Guger C; Krausz G; Allison BZ; Edlinger G
    Front Neurosci; 2012; 6():60. PubMed ID: 22586362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically 'charge-discharge' electrolyte.
    Li G; Wang S; Li M; Duan YY
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721854
    [No Abstract]   [Full Text] [Related]  

  • 18. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Pre-Gelled EEG Electrode and Its Application in SSVEP-Based BCI.
    Pei W; Wu X; Zhang X; Zha A; Tian S; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():843-850. PubMed ID: 35324444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Electrode Technologies for Noninvasive Brain-Computer Interfaces.
    Lin S; Jiang J; Huang K; Li L; He X; Du P; Wu Y; Liu J; Li X; Huang Z; Zhou Z; Yu Y; Gao J; Lei M; Wu H
    ACS Nano; 2023 Dec; 17(24):24487-24513. PubMed ID: 38064282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.