These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 37313916)
1. Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain. Zachariah RM; Priya PS; Pendem S J Cancer Res Ther; 2023; 19(2):435-446. PubMed ID: 37313916 [TBL] [Abstract][Full Text] [Related]
2. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences. Qin JB; Liu Z; Zhang H; Shen C; Wang XC; Tan Y; Wang S; Wu XF; Tian J Med Sci Monit; 2017 May; 23():2168-2178. PubMed ID: 28478462 [TBL] [Abstract][Full Text] [Related]
4. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades. Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669 [TBL] [Abstract][Full Text] [Related]
5. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm. Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433 [TBL] [Abstract][Full Text] [Related]
6. Differentiation of invasive ductal and lobular carcinoma of the breast using MRI radiomic features: a pilot study. Maiti S; Nayak S; Hebbar KD; Pendem S F1000Res; 2024; 13():91. PubMed ID: 38571894 [TBL] [Abstract][Full Text] [Related]
7. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632 [TBL] [Abstract][Full Text] [Related]
8. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
9. Diagnostic accuracy of MRI texture analysis for grading gliomas. Ditmer A; Zhang B; Shujaat T; Pavlina A; Luibrand N; Gaskill-Shipley M; Vagal A J Neurooncol; 2018 Dec; 140(3):583-589. PubMed ID: 30145731 [TBL] [Abstract][Full Text] [Related]
10. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
11. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive Assessment of O(6)-Methylguanine-DNA Methyltransferase Promoter Methylation Status in World Health Organization Grade II-IV Glioma Using Histogram Analysis of Inflow-Based Vascular-Space-Occupancy Combined with Structural Magnetic Resonance Imaging. He W; Li X; Hua J; Liao S; Guo L; Xiao X; Liu X; Zhou J; Wang W; Xu Y; Wu Y J Magn Reson Imaging; 2021 Jul; 54(1):227-236. PubMed ID: 33590929 [TBL] [Abstract][Full Text] [Related]
13. Quantitative vs. semiquantitative assessment of intratumoral susceptibility signals in patients with different grades of glioma. Bhattacharjee R; Gupta RK; Patir R; Vaishya S; Ahlawat S; Singh A J Magn Reson Imaging; 2020 Jan; 51(1):225-233. PubMed ID: 31087724 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
15. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive Evaluation of the Notch Signaling Pathway via Radiomic Signatures Based on Multiparametric MRI in Association With Biological Functions of Patients With Glioma: A Multi-institutional Study. Shen N; Lv W; Li S; Liu D; Xie Y; Zhang J; Zhang J; Jiang J; Jiang R; Zhu W J Magn Reson Imaging; 2023 Mar; 57(3):884-896. PubMed ID: 35929909 [TBL] [Abstract][Full Text] [Related]
17. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient. Maynard J; Okuchi S; Wastling S; Busaidi AA; Almossawi O; Mbatha W; Brandner S; Jaunmuktane Z; Koc AM; Mancini L; Jäger R; Thust S Radiology; 2020 Jul; 296(1):111-121. PubMed ID: 32315266 [TBL] [Abstract][Full Text] [Related]
18. Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma. Jing H; Yang F; Peng K; Qin D; He Y; Yang G; Zhang H Biomed Res Int; 2022; 2022():4667117. PubMed ID: 36246986 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
20. Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features. Zhou T; Qiao B; Peng B; Liu Y; Gong Z; Kang M; He Y; Pang C; Dai Y; Sheng M Sci Rep; 2024 Jun; 14(1):13683. PubMed ID: 38871755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]