These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37314106)

  • 1. Trace detection of chiral J-aggregated molecules adsorbed on single Au nanorods.
    Lin X; Zhou Y; Pan X; Zhang Q; Hu N; Li H; Wang L; Xue Q; Zhang W; Ni W
    Nanoscale; 2023 Jun; 15(25):10667-10676. PubMed ID: 37314106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes.
    Zhang Q; Hernandez T; Smith KW; Hosseini Jebeli SA; Dai AX; Warning L; Baiyasi R; McCarthy LA; Guo H; Chen DH; Dionne JA; Landes CF; Link S
    Science; 2019 Sep; 365(6460):1475-1478. PubMed ID: 31604278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Reversal of Circular Dichroism in the Seed-Mediated Growth of Bichiral Plasmonic Nanoparticles.
    Sun X; Yang J; Sun L; Yang G; Liu C; Tao Y; Cheng Q; Wang C; Xu H; Zhang Q
    ACS Nano; 2022 Nov; 16(11):19174-19186. PubMed ID: 36251931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains.
    Martens K; Binkowski F; Nguyen L; Hu L; Govorov AO; Burger S; Liedl T
    Nat Commun; 2021 Apr; 12(1):2025. PubMed ID: 33795690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral Au₂₅ nanospheres and nanorods: synthesis and insight into the origin of chirality.
    Zhu M; Qian H; Meng X; Jin S; Wu Z; Jin R
    Nano Lett; 2011 Sep; 11(9):3963-9. PubMed ID: 21834520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Chiral Sensing at the Few-Molecule Level Using Negative Index Metamaterial Plasmonic Nanocuvettes.
    Indukuri SRKC; Frydendahl C; Sharma N; Mazurski N; Paltiel Y; Levy U
    ACS Nano; 2022 Oct; 16(10):17289-17297. PubMed ID: 36194513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight on Chirality Encoding from Small Thiolated Molecule to Plasmonic Au@Ag and Au@Au Nanoparticles.
    Carone A; Mariani P; Désert A; Romanelli M; Marcheselli J; Garavelli M; Corni S; Rivalta I; Parola S
    ACS Nano; 2022 Jan; 16(1):1089-1101. PubMed ID: 34994190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots.
    Kneer LM; Roller EM; Besteiro LV; Schreiber R; Govorov AO; Liedl T
    ACS Nano; 2018 Sep; 12(9):9110-9115. PubMed ID: 30188691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace-Amount Detection of Chiral Molecules Based on Plasmonic Racemic Arrays Fabricated via Direct Laser Writing.
    Tan Y; Lu X; Ding T
    ACS Sens; 2024 Jun; 9(6):3290-3295. PubMed ID: 38832719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals.
    Querejeta-Fernández A; Chauve G; Methot M; Bouchard J; Kumacheva E
    J Am Chem Soc; 2014 Mar; 136(12):4788-93. PubMed ID: 24588564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core-shell interface of rod-shaped Au@Ag nanocrystals.
    Hou S; Yan J; Hu Z; Wu X
    Chem Commun (Camb); 2016 Feb; 52(10):2059-62. PubMed ID: 26687977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral plasmonic DNA nanostructures with switchable circular dichroism.
    Schreiber R; Luong N; Fan Z; Kuzyk A; Nickels PC; Zhang T; Smith DM; Yurke B; Kuang W; Govorov AO; Liedl T
    Nat Commun; 2013; 4():2948. PubMed ID: 24336125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-Nanoparticle-Based Chiral Plasmonic Nanostructures and Their Biomedical Applications.
    Li H; Gao X; Zhang C; Ji Y; Hu Z; Wu X
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral nanocrystals: plasmonic spectra and circular dichroism.
    Fan Z; Govorov AO
    Nano Lett; 2012 Jun; 12(6):3283-9. PubMed ID: 22591323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids.
    Zheng G; Bao Z; Pérez-Juste J; Du R; Liu W; Dai J; Zhang W; Lee LYS; Wong KY
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16452-16457. PubMed ID: 30375752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing Interactions between Chiral Plasmonic Nanoparticles and Biomolecules.
    Tadgell B; Liz-Marzán LM
    Chemistry; 2023 Nov; 29(62):e202301691. PubMed ID: 37581332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attomolar DNA detection with chiral nanorod assemblies.
    Ma W; Kuang H; Xu L; Ding L; Xu C; Wang L; Kotov NA
    Nat Commun; 2013; 4():2689. PubMed ID: 24162144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic circular dichroism of chiral metal nanoparticle assemblies.
    Fan Z; Govorov AO
    Nano Lett; 2010 Jul; 10(7):2580-7. PubMed ID: 20536209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.