BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37314185)

  • 1. Pyocyanin-dependent electrochemical inhibition of
    Jiménez Otero F; Newman DK; Tender LM
    mBio; 2023 Aug; 14(4):e0070223. PubMed ID: 37314185
    [No Abstract]   [Full Text] [Related]  

  • 2. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
    Saunders SH; Tse ECM; Yates MD; Otero FJ; Trammell SA; Stemp EDA; Barton JK; Tender LM; Newman DK
    Cell; 2020 Aug; 182(4):919-932.e19. PubMed ID: 32763156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron.
    Kang J; Cho YH; Lee Y
    Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Surface-Enhanced Raman Spectroscopy of Pyocyanin Secreted by Pseudomonas aeruginosa Communities.
    Do H; Kwon SR; Fu K; Morales-Soto N; Shrout JD; Bohn PW
    Langmuir; 2019 May; 35(21):7043-7049. PubMed ID: 31042392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14.
    Jo J; Price-Whelan A; Cornell WC; Dietrich LEP
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays.
    Simoska O; Sans M; Fitzpatrick MD; Crittenden CM; Eberlin LS; Shear JB; Stevenson KJ
    ACS Sens; 2019 Jan; 4(1):170-179. PubMed ID: 30525472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant
    VanDrisse CM; Lipsh-Sokolik R; Khersonsky O; Fleishman SJ; Newman DK
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723058
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms.
    Bellin DL; Sakhtah H; Zhang Y; Price-Whelan A; Dietrich LE; Shepard KL
    Nat Commun; 2016 Jan; 7():10535. PubMed ID: 26813638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa.
    Meirelles LA; Newman DK
    Mol Microbiol; 2018 Dec; 110(6):995-1010. PubMed ID: 30230061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer.
    Wang Y; Kern SE; Newman DK
    J Bacteriol; 2010 Jan; 192(1):365-9. PubMed ID: 19880596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa.
    Zhu K; Chen S; Sysoeva TA; You L
    PLoS Biol; 2019 Dec; 17(12):e3000573. PubMed ID: 31841520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.
    Das T; Kutty SK; Tavallaie R; Ibugo AI; Panchompoo J; Sehar S; Aldous L; Yeung AW; Thomas SR; Kumar N; Gooding JJ; Manefield M
    Sci Rep; 2015 Feb; 5():8398. PubMed ID: 25669133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time in-situ electrochemical monitoring of Pseudomonas aeruginosa biofilms grown on air-liquid interface and its antibiotic susceptibility using a novel dual-chamber microfluidic device.
    Zhang Y; Gholizadeh H; Young P; Traini D; Li M; Ong HX; Cheng S
    Biotechnol Bioeng; 2023 Mar; 120(3):702-714. PubMed ID: 36408870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.
    Hassan MM; Cheng KY; Ho G; Cord-Ruwisch R
    Biosens Bioelectron; 2017 Jan; 87():531-536. PubMed ID: 27606880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.
    Lin YC; Sekedat MD; Cornell WC; Silva GM; Okegbe C; Price-Whelan A; Vogel C; Dietrich LEP
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29463605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH dehydrogenases are the predominant phenazine reductases in the electron transport chain of Pseudomonas aeruginosa.
    Ciemniecki JA; Newman DK
    Mol Microbiol; 2023 May; 119(5):560-573. PubMed ID: 36840394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays.
    Do H; Kwon SR; Baek S; Madukoma CS; Smiley MK; Dietrich LE; Shrout JD; Bohn PW
    Analyst; 2021 Feb; 146(4):1346-1354. PubMed ID: 33393560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of a biofilm electrocline using real-time 3D metabolite analysis.
    Koley D; Ramsey MM; Bard AJ; Whiteley M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19996-20001. PubMed ID: 22123963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenazine oxidation by a distal electrode modulates biofilm morphogenesis.
    Cornell WC; Zhang Y; Bendebury A; Hartel AJW; Shepard KL; Dietrich LEP
    Biofilm; 2020 Dec; 2():100025. PubMed ID: 33447810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms.
    Costa KC; Glasser NR; Conway SJ; Newman DK
    Science; 2017 Jan; 355(6321):170-173. PubMed ID: 27940577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.