These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37314407)

  • 21. Genomic Determinants Encode the Reactivity and Regioselectivity of Flavin-Dependent Halogenases in Bacterial Genomes and Metagenomes.
    Jeon J; Lee J; Jung SM; Shin JH; Song WJ; Rho M
    mSystems; 2021 Jun; 6(3):e0005321. PubMed ID: 34042468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Laboratory-Evolved Flavin-Dependent Halogenases Affords a Computational Model for Predicting Halogenase Site Selectivity.
    Andorfer MC; Evans D; Yang S; He CQ; Girlich AM; Vergara-Coll J; Sukumar N; Houk KN; Lewis JC
    Chem Catal; 2022 Oct; 2(10):2658-2674. PubMed ID: 36569427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural perspective on enzymatic halogenation.
    Blasiak LC; Drennan CL
    Acc Chem Res; 2009 Jan; 42(1):147-55. PubMed ID: 18774824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystallographic and thermodynamic evidence of negative cooperativity of flavin and tryptophan binding in the flavin-dependent halogenases AbeH and BorH.
    Ashaduzzaman M; Lingkon K; De Silva AJ; Bellizzi JJ
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
    Yeh E; Cole LJ; Barr EW; Bollinger JM; Ballou DP; Walsh CT
    Biochemistry; 2006 Jun; 45(25):7904-12. PubMed ID: 16784243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan.
    Liu HY; Qian F; Zhang HM; Gui Q; Wang YW; Wang P
    Biotechnol J; 2024 Apr; 19(4):e2300557. PubMed ID: 38581092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases.
    Yeh E; Blasiak LC; Koglin A; Drennan CL; Walsh CT
    Biochemistry; 2007 Feb; 46(5):1284-92. PubMed ID: 17260957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway.
    Pang AH; Garneau-Tsodikova S; Tsodikov OV
    J Struct Biol; 2015 Dec; 192(3):349-357. PubMed ID: 26416533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa.
    Olucha J; Meneely KM; Chilton AS; Lamb AL
    J Biol Chem; 2011 Sep; 286(36):31789-98. PubMed ID: 21757711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of Action of Flavin-Dependent Halogenases.
    Barker RD; Yu Y; De Maria L; Johannissen LO; Scrutton NS
    ACS Catal; 2022 Dec; 12(24):15352-15360. PubMed ID: 36570077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities.
    Heine T; van Berkel WJH; Gassner G; van Pée KH; Tischler D
    Biology (Basel); 2018 Aug; 7(3):. PubMed ID: 30072664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flavin-dependent halogenases involved in secondary metabolism in bacteria.
    van Pée KH; Patallo EP
    Appl Microbiol Biotechnol; 2006 May; 70(6):631-41. PubMed ID: 16544142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Halogenating Enzymes for Active Agent Synthesis: First Steps Are Done and Many Have to Follow.
    Fejzagić AV; Gebauer J; Huwa N; Classen T
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31694313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation.
    Ismail M; Schroeder L; Frese M; Kottke T; Hollmann F; Paul CE; Sewald N
    ACS Catal; 2019 Feb; 9(2):1389-1395. PubMed ID: 30775067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli.
    Lee J; Kim J; Song JE; Song WS; Kim EJ; Kim YG; Jeong HJ; Kim HR; Choi KY; Kim BG
    Nat Chem Biol; 2021 Jan; 17(1):104-112. PubMed ID: 33139950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic chlorination and bromination.
    van Pée KH
    Methods Enzymol; 2012; 516():237-57. PubMed ID: 23034232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic halogenation catalyzed via a catalytic triad and by oxidoreductases.
    van Pée KH; Keller S; Wage T; Wynands I; Schnerr H; Zehner S
    Biol Chem; 2000 Jan; 381(1):1-5. PubMed ID: 10722044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.