These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37314827)

  • 21. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.
    Mu W; Ben H; Du X; Zhang X; Hu F; Liu W; Ragauskas AJ; Deng Y
    Bioresour Technol; 2014 Dec; 173():6-10. PubMed ID: 25280108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimetallic-Derived Catalytic Structures for CO
    Xie Z; Chen JG
    Acc Chem Res; 2023 Sep; 56(18):2447-2458. PubMed ID: 37647142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trends in methanol decomposition on transition metal alloy clusters from scaling and Brønsted-Evans-Polanyi relationships.
    Mehmood F; Rankin RB; Greeley J; Curtiss LA
    Phys Chem Chem Phys; 2012 Jun; 14(24):8644-52. PubMed ID: 22588638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.
    Song HJ; Deng J; Cui MS; Li XL; Liu XX; Zhu R; Wu WP; Fu Y
    ChemSusChem; 2015 Dec; 8(24):4250-5. PubMed ID: 26611542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of chemical modifications of micro- and macromolecules in bio-oil during hydrodeoxygenation with Pd/C catalyst in supercritical ethanol.
    Oh S; Hwang H; Choi HS; Choi JW
    Chemosphere; 2014 Dec; 117():806-14. PubMed ID: 24582356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical Study of the Mechanism of Furfural Conversion on the NiCuCu(111) Surface.
    Shi Y
    ACS Omega; 2019 Oct; 4(17):17447-17456. PubMed ID: 31656917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of oxide supports in stabilizing desirable Pt-Ni bimetallic structures for hydrogenation and reforming reactions.
    Wang T; Mpourmpakis G; Lonergan WW; Vlachos DG; Chen JG
    Phys Chem Chem Phys; 2013 Aug; 15(29):12156-64. PubMed ID: 23689424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium-Modified Iridium Catalyst.
    Liu S; Dutta S; Zheng W; Gould NS; Cheng Z; Xu B; Saha B; Vlachos DG
    ChemSusChem; 2017 Aug; 10(16):3225-3234. PubMed ID: 28686334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.
    Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrocatalytic Hydrogenation of Oxygenates using Earth-Abundant Transition-Metal Nanoparticles under Mild Conditions.
    Carroll KJ; Burger T; Langenegger L; Chavez S; Hunt ST; Román-Leshkov Y; Brushett FR
    ChemSusChem; 2016 Aug; 9(15):1904-10. PubMed ID: 27337680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.
    Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B
    ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breaking the Linear Relation in the Dissociation of Nitrogen on Iron Surfaces.
    Liu D; Zhao W; Yuan Q
    Chemphyschem; 2022 Sep; 23(17):e202200147. PubMed ID: 35608395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces.
    Munter TR; Bligaard T; Christensen CH; Nørskov JK
    Phys Chem Chem Phys; 2008 Sep; 10(34):5202-6. PubMed ID: 18728861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ construction of 3D NiMo bimetallic catalysts anchored on dendritic mesoporous silica for the upgrading of biomass derivatives.
    Zhang G; Ma L; Dong Y; Dou S; Kong X
    J Colloid Interface Sci; 2023 Oct; 647():188-200. PubMed ID: 37247482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density Functional Theory Study of CO
    Wang Y; Yu M; Zhang X; Gao Y; Liu J; Zhang X; Gong C; Cao X; Ju Z; Peng Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linear Activation Energy-Reaction Energy Relations for LaBO
    Zhang L; Su YQ; Chang MW; Filot IAW; Hensen EJM
    J Phys Chem C Nanomater Interfaces; 2019 Dec; 123(51):31130-31141. PubMed ID: 32952767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating.
    Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM
    Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Processes and Catalysts for Biomass to Hydrocarbons at Moderate Conditions: A Comprehensive Review.
    Shomal R; Zheng Y
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.