These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37314897)
1. A Method for Calculating Lower Extremity Anatomical Landmark Trajectories Based on Inertial Motion Capture Data. Wang Z; Gao F; Wu Z; Wang D; Guo X; Yu S IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2734-2746. PubMed ID: 37314897 [TBL] [Abstract][Full Text] [Related]
2. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems. Nail-Ulloa I; Zabala M; Sesek R; Chen H; Schall MC; Gallagher S Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544203 [TBL] [Abstract][Full Text] [Related]
3. Intra- and inter-rater reliability of joint range of motion tests using tape measure, digital inclinometer and inertial motion capturing. Fraeulin L; Holzgreve F; Brinkbäumer M; Dziuba A; Friebe D; Klemz S; Schmitt M; Theis A AL; Tenberg S; van Mark A; Maurer-Grubinger C; Ohlendorf D PLoS One; 2020; 15(12):e0243646. PubMed ID: 33301541 [TBL] [Abstract][Full Text] [Related]
5. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
6. Depth camera based statistical shape fitting approach for the creation of an individualized lower body biomechanical model: validity and reliability. Taetz B; Teufl W; Weidmann A; Pietschmann J; Jöllenbeck T; Bleser G Comput Methods Biomech Biomed Engin; 2020 Jan; 23(1):12-22. PubMed ID: 31729264 [TBL] [Abstract][Full Text] [Related]
7. Sensor-to-body calibration procedure for clinical motion analysis of lower limb using magnetic and inertial measurement units. Nazarahari M; Noamani A; Ahmadian N; Rouhani H J Biomech; 2019 Mar; 85():224-229. PubMed ID: 30732911 [TBL] [Abstract][Full Text] [Related]
8. Inertial motion capture validation of 3D knee kinematics at various gait speed on the treadmill with a double-pose calibration. Robert-Lachaine X; Parent G; Fuentes A; Hagemeister N; Aissaoui R Gait Posture; 2020 Mar; 77():132-137. PubMed ID: 32035296 [TBL] [Abstract][Full Text] [Related]
9. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. Faber GS; Chang CC; Kingma I; Dennerlein JT; van Dieën JH J Biomech; 2016 Apr; 49(6):904-912. PubMed ID: 26795123 [TBL] [Abstract][Full Text] [Related]
10. [Research progress of optical motion capture technology in shoulder biomechanics]. Zhang BR; Liu T; Zhang MT; Yang ZT; Liang JW; Wang XH; Zhang CJ; Yun XD Zhongguo Gu Shang; 2023 Jun; 36(6):591-6. PubMed ID: 37366106 [TBL] [Abstract][Full Text] [Related]
11. Reliability and Agreement of 3D Trunk and Lower Extremity Movement Analysis by Means of Inertial Sensor Technology for Unipodal and Bipodal Tasks. van der Straaten R; Bruijnes AKBD; Vanwanseele B; Jonkers I; De Baets L; Timmermans A Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30609808 [TBL] [Abstract][Full Text] [Related]
12. Validation of a low-cost inertial motion capture system for whole-body motion analysis. Robert-Lachaine X; Mecheri H; Muller A; Larue C; Plamondon A J Biomech; 2020 Jan; 99():109520. PubMed ID: 31787261 [TBL] [Abstract][Full Text] [Related]
13. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors. Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities. Mihcin S Biomed Tech (Berl); 2022 Jun; 67(3):185-199. PubMed ID: 35575784 [TBL] [Abstract][Full Text] [Related]
15. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Al-Amri M; Nicholas K; Button K; Sparkes V; Sheeran L; Davies JL Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495600 [TBL] [Abstract][Full Text] [Related]
16. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Picerno P; Caliandro P; Iacovelli C; Simbolotti C; Crabolu M; Pani D; Vannozzi G; Reale G; Rossini PM; Padua L; Cereatti A Sci Rep; 2019 Oct; 9(1):14449. PubMed ID: 31594964 [TBL] [Abstract][Full Text] [Related]
17. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. Schmitz A; Ye M; Shapiro R; Yang R; Noehren B J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287 [TBL] [Abstract][Full Text] [Related]
18. A Novel Procedure for Knee Flexion Angle Estimation Based on Functionally Defined Coordinate Systems and Independent of the Marker Landmarks. Ancillao A; Verduyn A; Vochten M; Aertbeliën E; De Schutter J Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612839 [TBL] [Abstract][Full Text] [Related]
19. Measurement of uni-planar and sport specific trunk motion using magneto-inertial measurement units: The concurrent validity of Noraxon and Xsens systems relative to a retro-reflective system. Cottam DS; Campbell AC; Davey MPC; Kent P; Elliott BC; Alderson JA Gait Posture; 2022 Feb; 92():129-134. PubMed ID: 34844151 [TBL] [Abstract][Full Text] [Related]