These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37314901)

  • 21. AutoEER: automatic EEG-based emotion recognition with neural architecture search.
    Wu Y; Liu H; Zhang D; Zhang Y; Lou T; Zheng Q
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37536317
    [No Abstract]   [Full Text] [Related]  

  • 22. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extending 2-D Convolutional Neural Networks to 3-D for Advancing Deep Learning Cancer Classification With Application to MRI Liver Tumor Differentiation.
    Trivizakis E; Manikis GC; Nikiforaki K; Drevelegas K; Constantinides M; Drevelegas A; Marias K
    IEEE J Biomed Health Inform; 2019 May; 23(3):923-930. PubMed ID: 30561355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural network with encoded visible edge prior for limited-angle computed tomography reconstruction.
    Ma G; Zhang Y; Zhao X; Wang T; Li H
    Med Phys; 2021 Oct; 48(10):6464-6481. PubMed ID: 34482570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initializing photonic feed-forward neural networks using auxiliary tasks.
    Passalis N; Mourgias-Alexandris G; Pleros N; Tefas A
    Neural Netw; 2020 Sep; 129():103-108. PubMed ID: 32504819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De Rham compatible Deep Neural Network FEM.
    Longo M; Opschoor JAA; Disch N; Schwab C; Zech J
    Neural Netw; 2023 Aug; 165():721-739. PubMed ID: 37390705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the Antinoise Ability of DNNs via a Bio-Inspired Noise Adaptive Activation Function Rand Softplus.
    Chen Y; Mai Y; Xiao J; Zhang L
    Neural Comput; 2019 Jun; 31(6):1215-1233. PubMed ID: 30979351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Tobit networks: A novel machine learning approach to microeconometrics.
    Zhang J; Li Z; Song X; Ning H
    Neural Netw; 2021 Dec; 144():279-296. PubMed ID: 34543854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AdaEn-Net: An ensemble of adaptive 2D-3D Fully Convolutional Networks for medical image segmentation.
    Baldeon Calisto M; Lai-Yuen SK
    Neural Netw; 2020 Jun; 126():76-94. PubMed ID: 32203876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studying the Evolution of Neural Activation Patterns During Training of Feed-Forward ReLU Networks.
    Hartmann D; Franzen D; Brodehl S
    Front Artif Intell; 2021; 4():642374. PubMed ID: 35005614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast deep neural correspondence for tracking and identifying neurons in
    Yu X; Creamer MS; Randi F; Sharma AK; Linderman SW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34259623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.
    Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC
    Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast generalization error bound of deep learning without scale invariance of activation functions.
    Terada Y; Hirose R
    Neural Netw; 2020 Sep; 129():344-358. PubMed ID: 32593931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Q-learning to globally optimize a
    Zhang H; Liang S; Matkovic LA; Momin S; Wang K; Yang X; Insana MF
    Quant Imaging Med Surg; 2023 Aug; 13(8):4879-4896. PubMed ID: 37581036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spurious Local Minima are Common for Deep Neural Networks With Piecewise Linear Activations.
    Liu B
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5382-5394. PubMed ID: 36126034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interpretable Learning Approaches in Resting-State Functional Connectivity Analysis: The Case of Autism Spectrum Disorder.
    Hu J; Cao L; Li T; Liao B; Dong S; Li P
    Comput Math Methods Med; 2020; 2020():1394830. PubMed ID: 32508974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Operation-aware Neural Networks for user response prediction.
    Yang Y; Xu B; Shen S; Shen F; Zhao J
    Neural Netw; 2020 Jan; 121():161-168. PubMed ID: 31563699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GAPCNN with HyPar: Global Average Pooling convolutional neural network with novel NNLU activation function and HYBRID parallelism.
    Habib G; Qureshi S
    Front Comput Neurosci; 2022; 16():1004988. PubMed ID: 36457992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.