BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37314922)

  • 1. Optimized single-cell RNA sequencing protocol to study early genome activation in mammalian preimplantation development.
    Boskovic N; Yazgeldi G; Ezer S; Tervaniemi MH; Inzunza J; Deligiannis SP; Yaşar B; Skoog T; Krjutškov K; Katayama S; Kere J
    STAR Protoc; 2023 Sep; 4(3):102357. PubMed ID: 37314922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of high-quality total RNA and RNA sequencing of single bovine oocytes.
    Biase FH
    STAR Protoc; 2021 Dec; 2(4):100895. PubMed ID: 34723212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Early Mouse Embryo Transcriptome by Low-Input RNA-Seq.
    Pérez-Palacios R; Fauque P; Teissandier A; Bourc'his D
    Methods Mol Biol; 2021; 2214():189-205. PubMed ID: 32944911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitranscriptomic mapping of RNA modifications at single-nucleotide resolution using rhodamine sequencing (Rho-seq).
    Finet O; Yague-Sanz C; Hermand D
    STAR Protoc; 2022 Jun; 3(2):101369. PubMed ID: 35573476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of regulatory links between transcription and RNA processing with long-read sequencing.
    Alfonso-Gonzalez C; Arrigoni L; Ozbulut HC; Falk S; Bönisch U; Hilgers V
    STAR Protoc; 2023 Dec; 4(4):102505. PubMed ID: 37733595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Tagged Reverse Transcription (STRT-Seq).
    Natarajan KN
    Methods Mol Biol; 2019; 1979():133-153. PubMed ID: 31028636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-embryo RNA sequencing for continuous and sex-specific gene expression analysis on Drosophila.
    Pérez-Mojica JE; Enders L; Lau KH; Lempradl A
    STAR Protoc; 2023 Sep; 4(3):102535. PubMed ID: 37682716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for single-cell isolation and genome amplification of environmental microbial eukaryotes for genomic analysis.
    Ciobanu D; Chan S; Ahrendt S; Quandt CA; Benny GL; Smith ME; James TY; Cheng JF
    STAR Protoc; 2022 Mar; 3(1):100968. PubMed ID: 35059648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized protocol to identify keratinocyte subpopulations in vitro by single-cell RNA sequencing analysis.
    Siriwach R; Ngo AQ; Narumiya S; Thumkeo D
    STAR Protoc; 2022 Dec; 3(4):101906. PubMed ID: 36595953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing Methods.
    Sasagawa Y; Hayashi T; Nikaido I
    Adv Exp Med Biol; 2019; 1129():1-17. PubMed ID: 30968357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-input ATAC&mRNA-seq protocol for simultaneous profiling of chromatin accessibility and gene expression.
    Li R; Grimm SA; Wade PA
    STAR Protoc; 2021 Sep; 2(3):100764. PubMed ID: 34485936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining pervasive transcription units using chromatin RNA-sequencing data.
    Guo Z; Liu X; Chen M
    STAR Protoc; 2022 Jun; 3(2):101442. PubMed ID: 35693207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping alternative polyadenylation in human cells using direct RNA sequencing technology.
    Polenkowski M; Allister AB; Burbano de Lara S; Soltau M; Kendre G; Tran DDH
    STAR Protoc; 2023 Sep; 4(3):102420. PubMed ID: 37432858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of m
    Peng Y; Meng H; Ge R; Liu S; Chen M; He C; Hu L
    STAR Protoc; 2022 Dec; 3(4):101677. PubMed ID: 36112507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating RNA degradation rates using large-scale normalization in mouse embryonic stem cells.
    Viegas JO; Fishman L; Meshorer E; Rabani M
    STAR Protoc; 2023 Sep; 4(3):102534. PubMed ID: 37656628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation protocol for analyzing cell-free DNA in the spent culture medium of human preimplantation embryos.
    Gao Y; Chen Y; Qiao J; Huang J; Wen L
    STAR Protoc; 2023 Apr; 4(2):102247. PubMed ID: 37086412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell RNA Sequencing in Yeast Using the 10× Genomics Chromium Device.
    Vermeersch L; Jariani A; Helsen J; Heineike BM; Verstrepen KJ
    Methods Mol Biol; 2022; 2477():3-20. PubMed ID: 35524108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA sequencing and analysis of rodent blood stage Plasmodium.
    Jentho E; Sousa AGG; Ramos S; Ademolue TW; Sobral J; Costa J; Brito D; Manteiro M; Leite RB; Lilue J; Soares MP
    STAR Protoc; 2023 Sep; 4(3):102491. PubMed ID: 37581982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for multi-modal single-cell RNA sequencing on M. tuberculosis-infected mouse lungs.
    Pisu D; Russell DG
    STAR Protoc; 2023 Mar; 4(1):102102. PubMed ID: 36853694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for identifying immune checkpoint on circulating tumor cells of human pancreatic ductal adenocarcinoma by single-cell RNA sequencing.
    Liu X; Song J; Liu X; Zhang H; Wang X; Li Y; Yang Z; Jing J; Ma X; Shi H
    STAR Protoc; 2023 Sep; 4(3):102539. PubMed ID: 37659082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.