These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37315137)

  • 1. Terahertz optical solitons from dispersion-compensated antenna-coupled planarized ring quantum cascade lasers.
    Micheletti P; Senica U; Forrer A; Cibella S; Torrioli G; Frankié M; Beck M; Faist J; Scalari G
    Sci Adv; 2023 Jun; 9(24):eadf9426. PubMed ID: 37315137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation.
    Li H; Yan M; Wan W; Zhou T; Zhou K; Li Z; Cao J; Yu Q; Zhang K; Li M; Nan J; He B; Zeng H
    Adv Sci (Weinh); 2019 Oct; 6(20):1900460. PubMed ID: 31637156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz Frequency Combs Exploiting an On-Chip, Solution-Processed, Graphene-Quantum Cascade Laser Coupled-Cavity.
    Mezzapesa FP; Garrasi K; Schmidt J; Salemi L; Pistore V; Li L; Davies AG; Linfield EH; Riesch M; Jirauschek C; Carey T; Torrisi F; Ferrari AC; Vitiello MS
    ACS Photonics; 2020 Dec; 7(12):3489-3498. PubMed ID: 33365362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum decoherence of dark pulses in optical microresonators.
    Lao C; Jin X; Chang L; Wang H; Lv Z; Xie W; Shu H; Wang X; Bowers JE; Yang QF
    Nat Commun; 2023 Mar; 14(1):1802. PubMed ID: 37002215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nozaki-Bekki solitons in semiconductor lasers.
    Opačak N; Kazakov D; Columbo LL; Beiser M; Letsou TP; Pilat F; Brambilla M; Prati F; Piccardo M; Capasso F; Schwarz B
    Nature; 2024 Jan; 625(7996):685-690. PubMed ID: 38267681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time domain modeling of terahertz quantum cascade lasers for frequency comb generation.
    Tzenov P; Burghoff D; Hu Q; Jirauschek C
    Opt Express; 2016 Oct; 24(20):23232-23247. PubMed ID: 27828388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.
    Wan WJ; Li H; Cao JC
    Opt Express; 2018 Jan; 26(2):980-989. PubMed ID: 29401985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum cascade lasers: from tool to product.
    Razeghi M; Lu QY; Bandyopadhyay N; Zhou W; Heydari D; Bai Y; Slivken S
    Opt Express; 2015 Apr; 23(7):8462-75. PubMed ID: 25968685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs.
    Mezzapesa FP; Pistore V; Garrasi K; Li L; Davies AG; Linfield EH; Dhillon S; Vitiello MS
    Opt Express; 2019 Jul; 27(15):20231-20240. PubMed ID: 31510121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation.
    Hu Q; Williams BS; Kumar S; Callebaut H; Reno JL
    Philos Trans A Math Phys Eng Sci; 2004 Feb; 362(1815):233-47; discussion 247-9. PubMed ID: 15306517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero dispersion Kerr solitons in optical microresonators.
    Anderson MH; Weng W; Lihachev G; Tikan A; Liu J; Kippenberg TJ
    Nat Commun; 2022 Aug; 13(1):4764. PubMed ID: 35963859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency noise correlation between the offset frequency and the mode spacing in a mid-infrared quantum cascade laser frequency comb.
    Shehzad A; Brochard P; Matthey R; Kapsalidis F; Shahmohammadi M; Beck M; Hugi A; Jouy P; Faist J; Südmeyer T; Schilt S
    Opt Express; 2020 Mar; 28(6):8200-8210. PubMed ID: 32225449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the spectral bandwidth of quantum cascade laser frequency combs.
    Beiser M; Opačak N; Hillbrand J; Strasser G; Schwarz B
    Opt Lett; 2021 Jul; 46(14):3416-3419. PubMed ID: 34264227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving comb formation over the entire lasing range of quantum cascade lasers.
    Yang Y; Burghoff D; Reno J; Hu Q
    Opt Lett; 2017 Oct; 42(19):3888-3891. PubMed ID: 28957152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monostable dissipative Kerr solitons.
    Tsao E; Xie Y; Nie M; Huang SW
    Opt Lett; 2022 Jan; 47(1):122-125. PubMed ID: 34951897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency modulation and (quasi) single-sideband emission of mid-infrared ring and ridge quantum cascade lasers.
    Hinkov B; Hayden J; Szedlak R; Martin-Mateos P; Jerez B; Acedo P; Strasser G; Lendl B
    Opt Express; 2019 May; 27(10):14716-14724. PubMed ID: 31163916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion.
    Liu X
    Opt Express; 2011 Mar; 19(7):5874-87. PubMed ID: 21451612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microresonator-based solitons for massively parallel coherent optical communications.
    Marin-Palomo P; Kemal JN; Karpov M; Kordts A; Pfeifle J; Pfeiffer MHP; Trocha P; Wolf S; Brasch V; Anderson MH; Rosenberger R; Vijayan K; Freude W; Kippenberg TJ; Koos C
    Nature; 2017 Jun; 546(7657):274-279. PubMed ID: 28593968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-temperature operation of broadband bidirectional terahertz quantum-cascade lasers.
    Khanal S; Gao L; Zhao L; Reno JL; Kumar S
    Sci Rep; 2016 Sep; 6():32978. PubMed ID: 27615416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode spectrum and temporal soliton formation in optical microresonators.
    Herr T; Brasch V; Jost JD; Mirgorodskiy I; Lihachev G; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2014 Sep; 113(12):123901. PubMed ID: 25279630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.