These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37315308)

  • 1. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect.
    Zhou H; Matoba F; Matsuno R; Wakayama Y; Yamada T
    Adv Mater; 2023 Sep; 35(36):e2303341. PubMed ID: 37315308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Thermocell System Using Proton Solvation Entropy.
    Kobayashi T; Yamada T; Tadokoro M; Kimizuka N
    Chemistry; 2021 Mar; 27(13):4287-4290. PubMed ID: 33205557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the local solvation structure of redox molecules in a mixed solvent for increasing the Seebeck coefficient of thermocells.
    Inoue H; Zhou H; Ando H; Nakagawa S; Yamada T
    Chem Sci; 2023 Dec; 15(1):146-153. PubMed ID: 38131095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles.
    Guo B; Miura Y; Hoshino Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32184-32192. PubMed ID: 34197066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Seebeck coefficients of thermocells by heat-induced deposition of I
    Inoue H; Liang Y; Yamada T; Kimizuka N
    Chem Commun (Camb); 2020 Jun; 56(51):7013-7016. PubMed ID: 32441729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Backbone Hydration of Poly(N-isopropyl acrylamide) Across the Volume Phase Transition Compared to its Monomer.
    Futscher MH; Philipp M; Müller-Buschbaum P; Schulte A
    Sci Rep; 2017 Dec; 7(1):17012. PubMed ID: 29208941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Thermoelectric Conversion with Polysulfide as Redox Species.
    Liang Y; Hui JK; Yamada T; Kimizuka N
    ChemSusChem; 2019 Sep; 12(17):4014-4020. PubMed ID: 31334607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermocells Driven by Phase Transition of Hydrogel Nanoparticles.
    Guo B; Hoshino Y; Gao F; Hayashi K; Miura Y; Kimizuka N; Yamada T
    J Am Chem Soc; 2020 Oct; 142(41):17318-17322. PubMed ID: 32981318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Efficiency Cryo-Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte.
    Li G; Dong D; Hong G; Yan L; Zhang X; Song W
    Adv Mater; 2019 Jun; 31(25):e1901403. PubMed ID: 31034133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Redox Refrigeration.
    McKay IS; Kunz LY; Majumdar A
    Sci Rep; 2019 Sep; 9(1):13945. PubMed ID: 31558735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study.
    Barragán VM
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34203522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting.
    Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W
    Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropy Rules: Molecular Dynamics Simulations of Model Oligomers for Thermoresponsive Polymers.
    Kantardjiev A; Ivanov PM
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation dynamics of N-substituted acrylamide polymers and the importance for phase transition behavior.
    Ortiz de Solorzano I; Bejagam KK; An Y; Singh SK; Deshmukh SA
    Soft Matter; 2020 Feb; 16(6):1582-1593. PubMed ID: 31951239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass-derived carbon helices induced phase transition in poly(N-ispropylacrylamide): A sustainable tailoring of coil-globule transition in thermoresponsive polymer.
    Yadav R; Aruchamy K; Mondal D; Venkatesu P
    Colloids Surf B Biointerfaces; 2020 Mar; 187():110637. PubMed ID: 31780340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating-cooling cycle.
    Deshmukh SA; Kamath G; Suthar KJ; Mancini DC; Sankaranarayanan SK
    Soft Matter; 2014 Mar; 10(10):1462-80. PubMed ID: 24651446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water.
    Tavagnacco L; Zaccarelli E; Chiessi E
    Phys Chem Chem Phys; 2018 Apr; 20(15):9997-10010. PubMed ID: 29619464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAFT Emulsion Polymerization of Styrene Using a Poly((
    Nieswandt K; Georgopanos P; Held M; Sperling E; Abetz V
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.