These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37315377)
21. Unveiling the role of ABI3 and hub senescence-related genes in macrophage senescence for atherosclerotic plaque progression. Fu Y; Zhang J; Liu Q; Yang L; Wu Q; Yang X; Wang L; Ding N; Xiong J; Gao Y; Ma S; Jiang Y Inflamm Res; 2024 Jan; 73(1):65-82. PubMed ID: 38062164 [TBL] [Abstract][Full Text] [Related]
22. Identification of common signature genes and pathways underlying the pathogenesis association between nonalcoholic fatty liver disease and atherosclerosis. Mo S; Wang Y; Yuan X; Wu W; Zhao H; Wei H; Qin H; Jiang H; Qin S Front Cardiovasc Med; 2023; 10():1142296. PubMed ID: 37063958 [TBL] [Abstract][Full Text] [Related]
23. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer. Yang C; Gong A Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215 [No Abstract] [Full Text] [Related]
24. Screening of potential gene markers for predicting carotid atheroma plaque formation using bioinformatics approaches. Wang G; Kuai D; Yang Y; Yang G; Wei Z; Zhao W Mol Med Rep; 2017 Apr; 15(4):2039-2048. PubMed ID: 28260035 [TBL] [Abstract][Full Text] [Related]
25. Bioinformatics analysis of diagnostic biomarkers for Alzheimer's disease in peripheral blood based on sex differences and support vector machine algorithm. Ji W; An K; Wang C; Wang S Hereditas; 2022 Oct; 159(1):38. PubMed ID: 36195955 [TBL] [Abstract][Full Text] [Related]
26. KLRD1, FOSL2 and LILRB3 as potential biomarkers for plaques progression in acute myocardial infarction and stable coronary artery disease. Zhang Q; Zheng Y; Ning M; Li T BMC Cardiovasc Disord; 2021 Jul; 21(1):344. PubMed ID: 34271875 [TBL] [Abstract][Full Text] [Related]
27. Identification of hub biomarkers of myocardial infarction by single-cell sequencing, bioinformatics, and machine learning. Zhang Q; Guo Y; Zhang B; Liu H; Peng Y; Wang D; Zhang D Front Cardiovasc Med; 2022; 9():939972. PubMed ID: 35958412 [TBL] [Abstract][Full Text] [Related]
28. Identification and Validation of Candidate Gene Module Along With Immune Cells Infiltration Patterns in Atherosclerosis Progression to Plaque Rupture Xu J; Chen C; Yang Y Front Cardiovasc Med; 2022; 9():894879. PubMed ID: 35811739 [TBL] [Abstract][Full Text] [Related]
29. Identification of Key Genes and Pathways in Myeloma side population cells by Bioinformatics Analysis. Yang Q; Li K; Li X; Liu J Int J Med Sci; 2020; 17(14):2063-2076. PubMed ID: 32922167 [No Abstract] [Full Text] [Related]
30. Pyroptosis-Related Gene Signature and Expression Patterns in the Deterioration of Atherosclerosis. Wu Y; Ma Q; Wang X; Wei T; Tian J; Zhang W Dis Markers; 2022; 2022():1356618. PubMed ID: 35571620 [TBL] [Abstract][Full Text] [Related]
31. Analysis of differentially expressed genes and signaling pathways involved in atherosclerosis and chronic obstructive pulmonary disease. Kotlyarov S Biomol Concepts; 2022 Feb; 13(1):34-54. PubMed ID: 35189051 [TBL] [Abstract][Full Text] [Related]
32. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J PeerJ; 2022; 10():e13932. PubMed ID: 36157062 [TBL] [Abstract][Full Text] [Related]
33. Investigation of the underlying genes and mechanism of familial hypercholesterolemia through bioinformatics analysis. Wang D; Liu B; Xiong T; Yu W; She Q BMC Cardiovasc Disord; 2020 Sep; 20(1):419. PubMed ID: 32938406 [TBL] [Abstract][Full Text] [Related]
34. Identification of Key Genes and Pathways in Tongue Squamous Cell Carcinoma Using Bioinformatics Analysis. Zhang H; Liu J; Fu X; Yang A Med Sci Monit; 2017 Dec; 23():5924-5932. PubMed ID: 29240723 [TBL] [Abstract][Full Text] [Related]
35. Identifying Hub Genes and Immune Cell Infiltration for the Progression of Carotid Atherosclerotic Plaques in the Context of Predictive and Preventive Using Integrative Bioinformatics Approaches and Machine-Learning Strategies. Zhang H; Huang Y; Li X; Chen W; Lun Y; Zhang J J Immunol Res; 2022; 2022():7657379. PubMed ID: 36304068 [TBL] [Abstract][Full Text] [Related]
36. Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV. Yan C; Niu Y; Wang X Front Immunol; 2022; 13():1008653. PubMed ID: 36389792 [TBL] [Abstract][Full Text] [Related]
37. Establishment and Analysis of an Artificial Neural Network Model for Early Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques. Wu Y; Xiao Q; Wang S; Xu H; Fang Y J Inflamm Res; 2023; 16():5667-5676. PubMed ID: 38050562 [TBL] [Abstract][Full Text] [Related]
38. Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms. Guo T; Hou D; Yu D Mol Med Rep; 2019 Nov; 20(5):4415-4424. PubMed ID: 31545495 [TBL] [Abstract][Full Text] [Related]
39. Comparison of ischemic stroke diagnosis models based on machine learning. Yang WX; Wang FF; Pan YY; Xie JQ; Lu MH; You CG Front Neurol; 2022; 13():1014346. PubMed ID: 36545400 [TBL] [Abstract][Full Text] [Related]
40. Identification of Monocyte-Associated Genes Related to the Instability of Atherosclerosis Plaque. Qin W; Gan F; Liang R; Li J; Lai X; Dai Y; Liu J Oxid Med Cell Longev; 2022; 2022():3972272. PubMed ID: 36187340 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]