These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37315381)

  • 1. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles.
    Du J; Liu Z; Dong W; Zhang W; Miao Z
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression.
    Wang M; Chen Z; Zhan H; Zhang J; Wu X; Jiang D; Guo Q
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature.
    Ma X; Liu Y; Song Q; Wang C
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the contribution of joint angles and sEMG signals on joint torque prediction accuracy using LSTM-based deep learning techniques.
    Kaya E; Argunsah H
    Comput Methods Biomech Biomed Engin; 2024 Sep; ():1-11. PubMed ID: 39235388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks.
    Zangene AR; Abbasi A; Nazarpour K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sEMG-Based End-to-End Continues Prediction of Human Knee Joint Angles Using the Tightly Coupled Convolutional Transformer Model.
    Liang T; Sun N; Wang Q; Bu J; Li L; Chen Y; Cao M; Ma J; Liu T
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5272-5280. PubMed ID: 37566511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals.
    Guo W; Ma C; Wang Z; Zhang H; Farina D; Jiang N; Lin C
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326941
    [No Abstract]   [Full Text] [Related]  

  • 10. Long short-term memory (LSTM) recurrent neural network for muscle activity detection.
    Ghislieri M; Cerone GL; Knaflitz M; Agostini V
    J Neuroeng Rehabil; 2021 Oct; 18(1):153. PubMed ID: 34674720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals.
    Zangene AR; Williams Samuel O; Abbasi A; Nazarpour K; McEwan AA; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography.
    Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of Joint Angle From sEMG and Inertial Measurements Based on Deep Learning Approach.
    Delgado AL; Da Rocha AF; Leon AS; Ruiz-Olaya A; Montero KR; Delis AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():700-703. PubMed ID: 34891388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recurrent Neural Network Enabled Continuous Motion Estimation of Lower Limb Joints From Incomplete sEMG Signals.
    Wang G; Jin L; Zhang J; Duan X; Yi J; Zhang M; Sun Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3577-3589. PubMed ID: 39269795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.
    Bian Q; Castellani M; Shepherd D; Duan J; Ding Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

  • 19. A Low-Cost End-to-End sEMG-Based Gait Sub-Phase Recognition System.
    Luo R; Sun S; Zhang X; Tang Z; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):267-276. PubMed ID: 31675333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG-Based Estimation of Lower Limb Joint Angles and Moments Using Long Short-Term Memory Network.
    Truong MTN; Ali AEA; Owaki D; Hayashibe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.