These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37315634)

  • 1. Machine Learning Models Based on a National-Scale Cohort Identify Patients at High Risk for Prolonged Lengths of Stay Following Primary Total Hip Arthroplasty.
    Chen TL; Buddhiraju A; Costales TG; Subih MA; Seo HH; Kwon YM
    J Arthroplasty; 2023 Oct; 38(10):1967-1972. PubMed ID: 37315634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can machine learning models predict prolonged length of hospital stay following primary total knee arthroplasty based on a national patient cohort data?
    Chen TL; Buddhiraju A; Seo HH; Shimizu MR; Bacevich BM; Kwon YM
    Arch Orthop Trauma Surg; 2023 Dec; 143(12):7185-7193. PubMed ID: 37592158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting extended hospital stay following revision total hip arthroplasty: a machine learning model analysis based on the ACS-NSQIP database.
    Chen TL; RezazadehSaatlou M; Buddhiraju A; Seo HH; Shimizu MR; Kwon YM
    Arch Orthop Trauma Surg; 2024 Sep; 144(9):4411-4420. PubMed ID: 39294531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting 30-day unplanned hospital readmission after revision total knee arthroplasty: machine learning model analysis of a national patient cohort.
    Chen TL; Shimizu MR; Buddhiraju A; Seo HH; Subih MA; Chen SF; Kwon YM
    Med Biol Eng Comput; 2024 Jul; 62(7):2073-2086. PubMed ID: 38451418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Machine Learning Model Performance in Predicting Blood Transfusion After Primary and Revision Total Hip Arthroplasty.
    Buddhiraju A; Shimizu MR; Subih MA; Chen TL; Seo HH; Kwon YM
    J Arthroplasty; 2023 Oct; 38(10):1959-1966. PubMed ID: 37315632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.
    Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN;
    Clin Orthop Relat Res; 2024 Aug; 482(8):1472-1482. PubMed ID: 38470976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal and External Validation of the Generalizability of Machine Learning Algorithms in Predicting Non-home Discharge Disposition Following Primary Total Knee Joint Arthroplasty.
    Chen TL; Buddhiraju A; Seo HH; Subih MA; Tuchinda P; Kwon YM
    J Arthroplasty; 2023 Oct; 38(10):1973-1981. PubMed ID: 36764409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and internal validation of machine learning algorithms for predicting complications after primary total hip arthroplasty.
    Kunze KN; Karhade AV; Polce EM; Schwab JH; Levine BR
    Arch Orthop Trauma Surg; 2023 Apr; 143(4):2181-2188. PubMed ID: 35508549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utility of machine learning algorithms for the prediction of patient-reported outcome measures following primary hip and knee total joint arthroplasty.
    Klemt C; Uzosike AC; Esposito JG; Harvey MJ; Yeo I; Subih M; Kwon YM
    Arch Orthop Trauma Surg; 2023 Apr; 143(4):2235-2245. PubMed ID: 35767040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can machine learning models predict failure of revision total hip arthroplasty?
    Klemt C; Cohen-Levy WB; Robinson MG; Burns JC; Alpaugh K; Yeo I; Kwon YM
    Arch Orthop Trauma Surg; 2023 Jun; 143(6):2805-2812. PubMed ID: 35507088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nomogram to predict the risk of prolonged length of stay following primary total hip arthroplasty with an enhanced recovery after surgery program.
    Wang H; Fan T; Li W; Yang B; Lin Q; Yang M
    J Orthop Surg Res; 2021 Dec; 16(1):716. PubMed ID: 34906186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Predicting prolonged length of intensive care unit stay
    Wu JY; Lin Y; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of a Machine Learning Algorithm After Primary Total Hip Arthroplasty: Applications to Length of Stay and Payment Models.
    Ramkumar PN; Navarro SM; Haeberle HS; Karnuta JM; Mont MA; Iannotti JP; Patterson BM; Krebs VE
    J Arthroplasty; 2019 Apr; 34(4):632-637. PubMed ID: 30665831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of 30-Day Mortality Following Revision Total Hip and Knee Arthroplasty: Machine Learning Algorithms Outperform CARDE-B, 5-Item, and 6-Item Modified Frailty Index Risk Scores.
    Pean CA; Buddhiraju A; Shimizu MR; Chen TL; Esposito JG; Kwon YM
    J Arthroplasty; 2024 Nov; 39(11):2824-2830. PubMed ID: 38797444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preoperative factors predict prolonged length of stay, serious adverse complications, and readmission following operative intervention of proximal humerus fractures: a machine learning analysis of a national database.
    Hornung AL; Rudisill SS; McCormick JR; Streepy JT; Harkin WE; Bryson N; Simcock X; Garrigues GE
    JSES Int; 2024 Jul; 8(4):699-708. PubMed ID: 39035667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Algorithms Predict Prolonged Opioid Use in Opioid-Naïve Primary Hip Arthroscopy Patients.
    Kunze KN; Polce EM; Alter TD; Nho SJ
    J Am Acad Orthop Surg Glob Res Rev; 2021 May; 5(5):e21.00093-8. PubMed ID: 34032690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The value of artificial neural networks for predicting length of stay, discharge disposition, and inpatient costs after anatomic and reverse shoulder arthroplasty.
    Karnuta JM; Churchill JL; Haeberle HS; Nwachukwu BU; Taylor SA; Ricchetti ET; Ramkumar PN
    J Shoulder Elbow Surg; 2020 Nov; 29(11):2385-2394. PubMed ID: 32713541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and Generalizability of Machine Learning Models for the Prediction of Discharge Disposition Following Revision Total Knee Arthroplasty.
    Buddhiraju A; Chen TL; Subih MA; Seo HH; Esposito JG; Kwon YM
    J Arthroplasty; 2023 Jun; 38(6S):S253-S258. PubMed ID: 36849013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Predictive Model for Determining Patients Not Requiring Prolonged Hospital Length of Stay After Elective Primary Total Hip Arthroplasty.
    Gabriel RA; Sharma BS; Doan CN; Jiang X; Schmidt UH; Vaida F
    Anesth Analg; 2019 Jul; 129(1):43-50. PubMed ID: 30234533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.