These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37315825)
1. A posterior probability based Bayesian method for single-cell RNA-seq data imputation. Chen S; Zheng R; Tian L; Wu FX; Li M Methods; 2023 Aug; 216():21-38. PubMed ID: 37315825 [TBL] [Abstract][Full Text] [Related]
2. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data. Chen S; Yan X; Zheng R; Li M Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258 [TBL] [Abstract][Full Text] [Related]
4. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data. Shi Y; Wan J; Zhang X; Yin Y Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858 [TBL] [Abstract][Full Text] [Related]
5. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network. Huang Z; Wang J; Lu X; Mohd Zain A; Yu G Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262 [TBL] [Abstract][Full Text] [Related]
6. Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq. Raevskiy M; Yanvarev V; Jung S; Del Sol A; Medvedeva YA Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047200 [TBL] [Abstract][Full Text] [Related]
7. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification. Zhu X; Meng S; Li G; Wang J; Peng X Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317025 [TBL] [Abstract][Full Text] [Related]
8. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts. Azim R; Wang S; Dipu SA Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187 [TBL] [Abstract][Full Text] [Related]
9. TsImpute: an accurate two-step imputation method for single-cell RNA-seq data. Zheng W; Min W; Wang S Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38039139 [TBL] [Abstract][Full Text] [Related]
10. SAE-Impute: imputation for single-cell data via subspace regression and auto-encoders. Bai L; Ji B; Wang S BMC Bioinformatics; 2024 Oct; 25(1):317. PubMed ID: 39354334 [TBL] [Abstract][Full Text] [Related]
11. SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares. Gong L; Cui X; Liu Y; Lin C; Gao Z Comput Biol Med; 2024 Mar; 171():108225. PubMed ID: 38442556 [TBL] [Abstract][Full Text] [Related]
12. I-Impute: a self-consistent method to impute single cell RNA sequencing data. Feng X; Chen L; Wang Z; Li SC BMC Genomics; 2020 Nov; 21(Suppl 10):618. PubMed ID: 33208097 [TBL] [Abstract][Full Text] [Related]
13. scCAN: Clustering With Adaptive Neighbor-Based Imputation Method for Single-Cell RNA-Seq Data. Dong S; Liu Y; Gong Y; Dong X; Zeng X IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):95-105. PubMed ID: 38285569 [TBL] [Abstract][Full Text] [Related]
17. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related]
18. FRMC: a fast and robust method for the imputation of scRNA-seq data. Wu H; Wang X; Chu M; Xiang R; Zhou K RNA Biol; 2021 Oct; 18(sup1):172-181. PubMed ID: 34459719 [TBL] [Abstract][Full Text] [Related]
19. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data. Xu J; Cai L; Liao B; Zhu W; Yang J Bioinformatics; 2020 May; 36(10):3139-3147. PubMed ID: 32073612 [TBL] [Abstract][Full Text] [Related]
20. SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data. Qi J; Zhou Y; Zhao Z; Jin S PLoS Comput Biol; 2021 Jun; 17(6):e1009118. PubMed ID: 34138847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]