These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37316096)
1. A unified framework of medical information annotation and extraction for Chinese clinical text. Zhu E; Sheng Q; Yang H; Liu Y; Cai T; Li J Artif Intell Med; 2023 Aug; 142():102573. PubMed ID: 37316096 [TBL] [Abstract][Full Text] [Related]
2. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related]
3. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
4. Constructing a Chinese electronic medical record corpus for named entity recognition on resident admit notes. Gao Y; Gu L; Wang Y; Wang Y; Yang F BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):56. PubMed ID: 30961596 [TBL] [Abstract][Full Text] [Related]
5. Temporal information extraction from mental health records to identify duration of untreated psychosis. Viani N; Kam J; Yin L; Bittar A; Dutta R; Patel R; Stewart R; Velupillai S J Biomed Semantics; 2020 Mar; 11(1):2. PubMed ID: 32156302 [TBL] [Abstract][Full Text] [Related]
6. Building a comprehensive syntactic and semantic corpus of Chinese clinical texts. He B; Dong B; Guan Y; Yang J; Jiang Z; Yu Q; Cheng J; Qu C J Biomed Inform; 2017 May; 69():203-217. PubMed ID: 28404537 [TBL] [Abstract][Full Text] [Related]
7. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
8. Attention-based deep residual learning network for entity relation extraction in Chinese EMRs. Zhang Z; Zhou T; Zhang Y; Pang Y BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):55. PubMed ID: 30961580 [TBL] [Abstract][Full Text] [Related]
9. Facilitating clinical research through automation: Combining optical character recognition with natural language processing. Hom J; Nikowitz J; Ottesen R; Niland JC Clin Trials; 2022 Oct; 19(5):504-511. PubMed ID: 35608136 [TBL] [Abstract][Full Text] [Related]
10. A Five-Step Workflow to Manually Annotate Unstructured Data into Training Dataset for Natural Language Processing. Zhu Y; Song T; Zhang Z; Yin M; Yu P Stud Health Technol Inform; 2024 Jan; 310():109-113. PubMed ID: 38269775 [TBL] [Abstract][Full Text] [Related]
11. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records. Cai X; Dong S; Hu J BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622 [TBL] [Abstract][Full Text] [Related]
12. RegEMR: a natural language processing system to automatically identify premature ovarian decline from Chinese electronic medical records. Cai J; Chen S; Guo S; Wang S; Li L; Liu X; Zheng K; Liu Y; Chen S BMC Med Inform Decis Mak; 2023 Jul; 23(1):126. PubMed ID: 37464410 [TBL] [Abstract][Full Text] [Related]
13. A fine-grained Chinese word segmentation and part-of-speech tagging corpus for clinical text. Xiong Y; Wang Z; Jiang D; Wang X; Chen Q; Xu H; Yan J; Tang B BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):66. PubMed ID: 30961602 [TBL] [Abstract][Full Text] [Related]
14. Developing a cardiovascular disease risk factor annotated corpus of Chinese electronic medical records. Su J; He B; Guan Y; Jiang J; Yang J BMC Med Inform Decis Mak; 2017 Aug; 17(1):117. PubMed ID: 28789686 [TBL] [Abstract][Full Text] [Related]
15. Dense Annotation of Free-Text Critical Care Discharge Summaries from an Indian Hospital and Associated Performance of a Clinical NLP Annotator. Ramanan SV; Radhakrishna K; Waghmare A; Raj T; Nathan SP; Sreerama SM; Sampath S J Med Syst; 2016 Aug; 40(8):187. PubMed ID: 27342107 [TBL] [Abstract][Full Text] [Related]
16. Synthetic data for annotation and extraction of family history information from clinical text. Brekke PH; Rama T; Pilán I; Nytrø Ø; Øvrelid L J Biomed Semantics; 2021 Jul; 12(1):11. PubMed ID: 34261535 [TBL] [Abstract][Full Text] [Related]
17. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
18. [Research on information extraction of electronic medical records in Chinese]. Li Y; Bao P; Xue W Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):757-62. PubMed ID: 20842840 [TBL] [Abstract][Full Text] [Related]
19. Drug knowledge discovery via multi-task learning and pre-trained models. Li D; Xiong Y; Hu B; Tang B; Peng W; Chen Q BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):251. PubMed ID: 34789238 [TBL] [Abstract][Full Text] [Related]
20. Building a semantically annotated corpus of clinical texts. Roberts A; Gaizauskas R; Hepple M; Demetriou G; Guo Y; Roberts I; Setzer A J Biomed Inform; 2009 Oct; 42(5):950-66. PubMed ID: 19535011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]