These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37316265)

  • 21. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research to develop a predicting system of mammalian subacute toxicity, (3). Construction of a predictive toxicokinetics model.
    Yamaguchi T; Yabuki M; Saito S; Watanabe T; Nishimura H; Isobe N; Shono F; Matsuo M
    Chemosphere; 1996 Dec; 33(12):2441-68. PubMed ID: 8976056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human plasma and urinary metabolic profiles of trimethylamine and trimethylamine N-oxide extrapolated using a simple physiologically based pharmacokinetic model.
    Shimizu M; Yamazaki H
    J Toxicol Sci; 2017; 42(4):485-490. PubMed ID: 28717107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Risk assessment for humans using physiologically based pharmacokinetic model of diethyl phthalate and its major metabolite, monoethyl phthalate.
    Jeong SH; Jang JH; Cho HY; Lee YB
    Arch Toxicol; 2020 Jul; 94(7):2377-2400. PubMed ID: 32303804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human plasma concentrations of trimethylamine N-oxide extrapolated using pharmacokinetic modeling based on metabolic profiles of deuterium-labeled trimethylamine in humanized-liver mice.
    Shimizu M; Suemizu H; Mizuno S; Kusama T; Miura T; Uehara S; Yamazaki H
    J Toxicol Sci; 2018; 43(6):387-393. PubMed ID: 29877215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human plasma concentrations of herbicidal carbamate molinate extrapolated from the pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and physiologically based pharmacokinetic modeling.
    Yamashita M; Suemizu H; Murayama N; Nishiyama S; Shimizu M; Yamazaki H
    Regul Toxicol Pharmacol; 2014 Oct; 70(1):214-21. PubMed ID: 25016177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood concentrations of acrylonitrile in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling.
    Takano R; Murayama N; Horiuchi K; Kitajima M; Kumamoto M; Shono F; Yamazaki H
    Regul Toxicol Pharmacol; 2010 Nov; 58(2):252-8. PubMed ID: 20600458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of Physiologically-Based Kinetics Modelling to Reliably Predict Internal Concentrations of the UV Filter, Homosalate, After Repeated Oral and Topical Application.
    Najjar A; Schepky A; Krueger CT; Dent M; Cable S; Li H; Grégoire S; Roussel L; Noel-Voisin A; Hewitt NJ; Cardamone E
    Front Pharmacol; 2021; 12():802514. PubMed ID: 35058784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug.
    Pathak SM; Ruff A; Kostewicz ES; Patel N; Turner DB; Jamei M
    Mol Pharm; 2017 Dec; 14(12):4305-4320. PubMed ID: 28771009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of permeability across intestinal cell monolayers for 219 disparate chemicals using in vitro experimental coefficients in a pH gradient system and in silico analyses by trivariate linear regressions and machine learning.
    Kamiya Y; Omura A; Hayasaka R; Saito R; Sano I; Handa K; Ohori J; Kitajima M; Shono F; Funatsu K; Yamazaki H
    Biochem Pharmacol; 2021 Oct; 192():114749. PubMed ID: 34461115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TCM-ADMEpred: A novel strategy for poly-pharmacokinetics prediction of traditional Chinese medicine based on single constituent pharmacokinetics, structural similarity, and mathematical modeling.
    Wang P; Li K; Tao Y; Li D; Zhang Y; Xu H; Yang H
    J Ethnopharmacol; 2019 May; 236():277-287. PubMed ID: 30826421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NTP technical report on the toxicology and carcinogenesis studies of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in female Harlan Sprague-Dawley rats (Gavage studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2006 May; (529):4-168. PubMed ID: 16835634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis.
    Peters SA
    Clin Pharmacokinet; 2008; 47(4):261-75. PubMed ID: 18336055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing.
    Wetmore BA; Wambaugh JF; Allen B; Ferguson SS; Sochaski MA; Setzer RW; Houck KA; Strope CL; Cantwell K; Judson RS; LeCluyse E; Clewell HJ; Thomas RS; Andersen ME
    Toxicol Sci; 2015 Nov; 148(1):121-36. PubMed ID: 26251325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of intestinal availability of various drugs in the oral absorption process using portal vein-cannulated rats.
    Matsuda Y; Konno Y; Satsukawa M; Kobayashi T; Takimoto Y; Morisaki K; Yamashita S
    Drug Metab Dispos; 2012 Dec; 40(12):2231-8. PubMed ID: 22930277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical Pharmacokinetics of Metoprolol: A Systematic Review.
    Zamir A; Hussain I; Ur Rehman A; Ashraf W; Imran I; Saeed H; Majeed A; Alqahtani F; Rasool MF
    Clin Pharmacokinet; 2022 Aug; 61(8):1095-1114. PubMed ID: 35764772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human blood concentrations of cotinine, a biomonitoring marker for tobacco smoke, extrapolated from nicotine metabolism in rats and humans and physiologically based pharmacokinetic modeling.
    Yamazaki H; Horiuchi K; Takano R; Nagano T; Shimizu M; Kitajima M; Murayama N; Shono F
    Int J Environ Res Public Health; 2010 Sep; 7(9):3406-21. PubMed ID: 20948932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasma concentrations of melengestrol acetate in humans extrapolated from the pharmacokinetics established in in vivo experiments with rats and chimeric mice with humanized liver and physiologically based pharmacokinetic modeling.
    Tsukada A; Suemizu H; Murayama N; Takano R; Shimizu M; Nakamura M; Yamazaki H
    Regul Toxicol Pharmacol; 2013 Apr; 65(3):316-24. PubMed ID: 23395687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiologically Based Pharmacokinetic Modeling of Oral Absorption, pH, and Food Effect in Healthy Volunteers to Drive Alpelisib Formulation Selection.
    Gajewska M; Blumenstein L; Kourentas A; Mueller-Zsigmondy M; Lorenzo S; Sinn A; Velinova M; Heimbach T
    AAPS J; 2020 Oct; 22(6):134. PubMed ID: 33070288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.