These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37316500)

  • 1. Quantum bath suppression in a superconducting circuit by immersion cooling.
    Lucas M; Danilov AV; Levitin LV; Jayaraman A; Casey AJ; Faoro L; Tzalenchuk AY; Kubatkin SE; Saunders J; de Graaf SE
    Nat Commun; 2023 Jun; 14(1):3522. PubMed ID: 37316500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-circuit refrigerator.
    Tan KY; Partanen M; Lake RE; Govenius J; Masuda S; Möttönen M
    Nat Commun; 2017 May; 8():15189. PubMed ID: 28480900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits.
    Kapit E
    Phys Rev Lett; 2016 Apr; 116(15):150501. PubMed ID: 27127945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux-tunable heat sink for quantum electric circuits.
    Partanen M; Tan KY; Masuda S; Govenius J; Lake RE; Jenei M; Grönberg L; Hassel J; Simbierowicz S; Vesterinen V; Tuorila J; Ala-Nissila T; Möttönen M
    Sci Rep; 2018 Apr; 8(1):6325. PubMed ID: 29679059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat Bath in a Quantum Circuit.
    Pekola JP; Karimi B
    Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture.
    Paik H; Schuster DI; Bishop LS; Kirchmair G; Catelani G; Sears AP; Johnson BR; Reagor MJ; Frunzio L; Glazman LI; Girvin SM; Devoret MH; Schoelkopf RJ
    Phys Rev Lett; 2011 Dec; 107(24):240501. PubMed ID: 22242979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoscopic systems: classical irreversibility and quantum coherence.
    Barbara B
    Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1975):4487-516. PubMed ID: 22908339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum heat engine power can be increased by noise-induced coherence.
    Scully MO; Chapin KR; Dorfman KE; Kim MB; Svidzinsky A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15097-100. PubMed ID: 21876187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-level systems in superconducting quantum devices due to trapped quasiparticles.
    de Graaf SE; Faoro L; Ioffe LB; Mahashabde S; Burnett JJ; Lindström T; Kubatkin SE; Danilov AV; Tzalenchuk AY
    Sci Adv; 2020 Dec; 6(51):. PubMed ID: 33355127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design.
    Ganjam S; Wang Y; Lu Y; Banerjee A; Lei CU; Krayzman L; Kisslinger K; Zhou C; Li R; Jia Y; Liu M; Frunzio L; Schoelkopf RJ
    Nat Commun; 2024 May; 15(1):3687. PubMed ID: 38693124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiative Cooling of a Superconducting Resonator.
    Xu M; Han X; Zou CL; Fu W; Xu Y; Zhong C; Jiang L; Tang HX
    Phys Rev Lett; 2020 Jan; 124(3):033602. PubMed ID: 32031838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operation of a silicon quantum processor unit cell above one kelvin.
    Yang CH; Leon RCC; Hwang JCC; Saraiva A; Tanttu T; Huang W; Camirand Lemyre J; Chan KW; Tan KY; Hudson FE; Itoh KM; Morello A; Pioro-Ladrière M; Laucht A; Dzurak AS
    Nature; 2020 Apr; 580(7803):350-354. PubMed ID: 32296190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control and readout of a superconducting qubit using a photonic link.
    Lecocq F; Quinlan F; Cicak K; Aumentado J; Diddams SA; Teufel JD
    Nature; 2021 Mar; 591(7851):575-579. PubMed ID: 33762768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional lattice gauge theories with superconducting quantum circuits.
    Marcos D; Widmer P; Rico E; Hafezi M; Rabl P; Wiese UJ; Zoller P
    Ann Phys (N Y); 2014 Dec; 351():634-654. PubMed ID: 25512676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the quantum heat contribution from a driven superconducting circuit.
    Elouard C; Thomas G; Maillet O; Pekola JP; Jordan AN
    Phys Rev E; 2020 Sep; 102(3-1):030102. PubMed ID: 33075879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-induced cooling of a superconducting qubit.
    Valenzuela SO; Oliver WD; Berns DM; Berggren KK; Levitov LS; Orlando TP
    Science; 2006 Dec; 314(5805):1589-92. PubMed ID: 17158325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits.
    Guo Q; Zheng SB; Wang J; Song C; Zhang P; Li K; Liu W; Deng H; Huang K; Zheng D; Zhu X; Wang H; Lu CY; Pan JW
    Phys Rev Lett; 2018 Sep; 121(13):130501. PubMed ID: 30312077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system.
    Rouxinol F; Hao Y; Brito F; Caldeira AO; Irish EK; LaHaye MD
    Nanotechnology; 2016 Sep; 27(36):364003. PubMed ID: 27483428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing coherence in molecular spin qubits via atomic clock transitions.
    Shiddiq M; Komijani D; Duan Y; Gaita-Ariño A; Coronado E; Hill S
    Nature; 2016 Mar; 531(7594):348-51. PubMed ID: 26983539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.