These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37316524)

  • 1. Water usability as a descriptive parameter of thermodynamic properties and water mobility in food solids.
    Cui T; Wu X; Mou T; Fan F
    NPJ Sci Food; 2023 Jun; 7(1):30. PubMed ID: 37316524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonenzymatic Browning of Amorphous Maltose/Whey Protein Isolates Matrix: Effects of Water Sorption and Molecular Mobility.
    Wu Y; Ye H; Fan F
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Water Activity on Thermal Resistance of Microorganisms in Low-Moisture Foods: A Review.
    Syamaladevi RM; Tang J; Villa-Rojas R; Sablani S; Carter B; Campbell G
    Compr Rev Food Sci Food Saf; 2016 Mar; 15(2):353-370. PubMed ID: 33371598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization and strength analysis of amorphous maltose and maltose/whey protein isolate mixtures.
    Wu Y; Huang W; Cui T; Fan F
    J Sci Food Agric; 2021 Apr; 101(6):2542-2551. PubMed ID: 33058153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato.
    Acevedo NC; Schebor C; Buera P
    Food Chem; 2008 Jun; 108(3):900-6. PubMed ID: 26065751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures.
    Tadapaneni RK; Yang R; Carter B; Tang J
    Food Res Int; 2017 Dec; 102():203-212. PubMed ID: 29195941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods.
    Gautam B; Govindan BN; GÓ“nzle M; Roopesh MS
    Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of glass transition and hydration on the biological stability of dry yeast.
    Kawai K; Sato K; Lee K; Koseki S
    J Food Sci; 2021 Apr; 86(4):1343-1353. PubMed ID: 33655495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water sorption characteristics of freeze-dried bacteria in low-moisture foods.
    Xu J; Xie Y; Paul NC; Roopesh MS; Shah DH; Tang J
    Int J Food Microbiol; 2022 Feb; 362():109494. PubMed ID: 34895752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water activity of poultry litter: Relationship to moisture content during a grow-out.
    Dunlop MW; McAuley J; Blackall PJ; Stuetz RM
    J Environ Manage; 2016 May; 172():201-6. PubMed ID: 26946169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Basis of Water Activity in Glycerol-Water Mixtures.
    Nakagawa H; Oyama T
    Front Chem; 2019; 7():731. PubMed ID: 31737605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Inactivation of Salmonella Agona in Low-Water Activity Foods: Predictive Models for the Combined Effect of Temperature, Water Activity, and Food Component.
    Jin Y; Pickens SR; Hildebrandt IM; Burbick SJ; Grasso-Kelley EM; Keller SE; Anderson NM
    J Food Prot; 2018 Sep; 81(9):1411-1417. PubMed ID: 30059253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water sorption properties, molecular mobility and probiotic survival in freeze dried protein-carbohydrate matrices.
    Hoobin P; Burgar I; Zhu S; Ying D; Sanguansri L; Augustin MA
    Food Funct; 2013 Sep; 4(9):1376-86. PubMed ID: 23851914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intermediate moisture foods and water activity determination].
    Multon JL; Bizot H
    Ann Nutr Aliment; 1978; 32(2-3):631-54. PubMed ID: 707937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exponentially Increased Thermal Resistance of Salmonella spp. and Enterococcus faecium at Reduced Water Activity.
    Liu S; Tang J; Tadapaneni RK; Yang R; Zhu MJ
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439987
    [No Abstract]   [Full Text] [Related]  

  • 17. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.
    Simha HV; Pushpadass HA; Franklin ME; Kumar PA; Manimala K
    J Food Sci Technol; 2016 Jun; 53(6):2705-14. PubMed ID: 27478226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiochemical properties and tastes of gels from Japanese Spanish mackerel (Scomberomorus niphonius) surimi by different washing processes.
    Pan J; Jia H; Shang M; Xu C; Lian H; Li H; Dong X
    J Texture Stud; 2018 Dec; 49(6):578-585. PubMed ID: 30156294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity.
    Lang E; Chemlal L; Molin P; Guyot S; Alvarez-Martin P; Perrier-Cornet JM; Dantigny P; Gervais P
    Food Res Int; 2017 Sep; 99(Pt 1):577-585. PubMed ID: 28784519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella enterica Serotype Enteritidis PT 30.
    Xie Y; Xu J; Yang R; Alshammari J; Zhu MJ; Sablani S; Tang J
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33158899
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.