These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37316672)

  • 1. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance.
    Sha G; Sun P; Kong X; Han X; Sun Q; Fouillen L; Zhao J; Li Y; Yang L; Wang Y; Gong Q; Zhou Y; Zhou W; Jain R; Gao J; Huang R; Chen X; Zheng L; Zhang W; Qin Z; Zhou Q; Zeng Q; Xie K; Xu J; Chiu TY; Guo L; Mortimer JC; Boutté Y; Li Q; Kang Z; Ronald PC; Li G
    Nature; 2023 Jun; 618(7967):1017-1023. PubMed ID: 37316672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Editing a rice CDP-DAG synthase confers broad-spectrum resistance.
    You X; Ning Y; Wang GL
    Trends Plant Sci; 2023 Dec; 28(12):1344-1346. PubMed ID: 37648632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing enables defense-yield balance in rice.
    Deng Y; He Z
    Stress Biol; 2023 Jul; 3(1):22. PubMed ID: 37676404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system.
    Yu K; Liu Z; Gui H; Geng L; Wei J; Liang D; Lv J; Xu J; Chen X
    BMC Plant Biol; 2021 Apr; 21(1):197. PubMed ID: 33894749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing for plant disease resistance: applications and perspectives.
    Yin K; Qiu JL
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180322. PubMed ID: 30967029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base editing in rice: current progress, advances, limitations, and future perspectives.
    Yarra R; Sahoo L
    Plant Cell Rep; 2021 Apr; 40(4):595-604. PubMed ID: 33423074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Editing of Rice
    Wang W; Ma S; Hu P; Ji Y; Sun F
    Viruses; 2021 Oct; 13(10):. PubMed ID: 34696530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice.
    Xu Z; Xu X; Gong Q; Li Z; Li Y; Wang S; Yang Y; Ma W; Liu L; Zhu B; Zou L; Chen G
    Mol Plant; 2019 Nov; 12(11):1434-1446. PubMed ID: 31493565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes.
    Tao H; Shi X; He F; Wang D; Xiao N; Fang H; Wang R; Zhang F; Wang M; Li A; Liu X; Wang GL; Ning Y
    J Integr Plant Biol; 2021 Sep; 63(9):1639-1648. PubMed ID: 34170614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional analysis of the novel rice blast resistance gene Pi65 in japonica rice.
    Wang L; Ma Z; Kang H; Gu S; Mukhina Z; Wang C; Wang H; Bai Y; Sui G; Zheng W; Ma D
    Theor Appl Genet; 2022 Jan; 135(1):173-183. PubMed ID: 34608507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing.
    Bisht DS; Bhatia V; Bhattacharya R
    Semin Cell Dev Biol; 2019 Dec; 96():65-76. PubMed ID: 31039395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale identification and functional analysis of
    Wang L; Zhao L; Zhang X; Zhang Q; Jia Y; Wang G; Li S; Tian D; Li WH; Yang S
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18479-18487. PubMed ID: 31451649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-specific nucleases as tools for enhancing disease resistance in crops.
    Nekrasov V
    Transgenic Res; 2019 Aug; 28(Suppl 2):75-80. PubMed ID: 31321687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Crops: Plant Genome Editing Toward Disease Resistance.
    Langner T; Kamoun S; Belhaj K
    Annu Rev Phytopathol; 2018 Aug; 56():479-512. PubMed ID: 29975607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.
    Zhou X; Liao H; Chern M; Yin J; Chen Y; Wang J; Zhu X; Chen Z; Yuan C; Zhao W; Wang J; Li W; He M; Ma B; Wang J; Qin P; Chen W; Wang Y; Liu J; Qian Y; Wang W; Wu X; Li P; Zhu L; Li S; Ronald PC; Chen X
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):3174-3179. PubMed ID: 29432165
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Mei Q; Fu YW; Li TM; Xuan YH
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Rice Broad-Spectrum Disease Resistance.
    Liu Z; Zhu Y; Shi H; Qiu J; Ding X; Kou Y
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of Xa10-like Genes in Rice Cultivar Nipponbare Confers Disease Resistance to Rice Bacterial Blight.
    Wang J; Tian D; Gu K; Yang X; Wang L; Zeng X; Yin Z
    Mol Plant Microbe Interact; 2017 Jun; 30(6):466-477. PubMed ID: 28304228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.