These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37317084)

  • 21. Methanotroph-microalgae co-culture for greenhouse gas mitigation: Effect of initial biomass ratio and methane concentration.
    Ruiz-Ruiz P; Gómez-Borraz TL; Revah S; Morales M
    Chemosphere; 2020 Nov; 259():127418. PubMed ID: 32574848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Batch cultivation of Methylosinus trichosporium OB3b: V. Characterization of poly-beta-hydroxybutyrate production under methane-dependent growth conditions.
    Shah NN; Hanna ML; Taylor RT
    Biotechnol Bioeng; 1996 Jan; 49(2):161-71. PubMed ID: 18623566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methanol production from CO(2) by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011.
    Xin JY; Zhang YX; Zhang S; Xia CG; Li SB
    J Basic Microbiol; 2007 Oct; 47(5):426-35. PubMed ID: 17910095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1.
    Koh SC; Bowman JP; Sayler GS
    Appl Environ Microbiol; 1993 Apr; 59(4):960-7. PubMed ID: 16348920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in the Genetic Manipulation of Methylosinus trichosporium OB3b.
    Ro SY; Rosenzweig AC
    Methods Enzymol; 2018; 605():335-349. PubMed ID: 29909832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP.
    Rostkowski KH; Pfluger AR; Criddle CS
    Bioresour Technol; 2013 Mar; 132():71-7. PubMed ID: 23395757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biogas bioconversion into poly(3-hydroxybutyrate) by a mixed microbial culture in a novel Taylor flow bioreactor.
    Cattaneo CR; Rodríguez Y; Rene ER; García-Depraect O; Muñoz R
    Waste Manag; 2022 Aug; 150():364-372. PubMed ID: 35914413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.
    Farhan Ul-Haque M; Kalidass B; Vorobev A; Baral BS; DiSpirito AA; Semrau JD
    Appl Environ Microbiol; 2015 Apr; 81(7):2466-73. PubMed ID: 25616801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection of methanotrophic platform for methanol production using methane and biogas.
    Kulkarni PP; Khonde VK; Deshpande MS; Sabale TR; Kumbhar PS; Ghosalkar AR
    J Biosci Bioeng; 2021 Nov; 132(5):460-468. PubMed ID: 34462232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst.
    Hwang IY; Hur DH; Lee JH; Park CH; Chang IS; Lee JW; Lee EY
    J Microbiol Biotechnol; 2015 Mar; 25(3):375-80. PubMed ID: 25563419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstruction of a Genome Scale Metabolic Model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP.
    Bordel S; Rojas A; Muñoz R
    Microb Cell Fact; 2019 Jun; 18(1):104. PubMed ID: 31170985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of nitrogen load on the function and diversity of methanotrophs in the littoral wetland of a boreal lake.
    Siljanen HM; Saari A; Bodrossy L; Martikainen PJ
    Front Microbiol; 2012; 3():39. PubMed ID: 22363324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol.
    Yu Y; Ramsay JA; Ramsay BA
    J Biotechnol; 2009 Jan; 139(1):78-83. PubMed ID: 18955091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Responses of mixed methanotrophic consortia to variable Cu
    Chidambarampadmavathy K; Karthikeyan OP; Huerlimann R; Maes GE; Heimann K
    J Environ Manage; 2017 Jul; 197():159-166. PubMed ID: 28365562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors.
    Graham DW; Chaudhary JA; Hanson RS; Arnold RG
    Microb Ecol; 1993 Jan; 25(1):1-17. PubMed ID: 24189703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined Effects of Carbon and Nitrogen Source to Optimize Growth of Proteobacterial Methanotrophs.
    Tays C; Guarnieri MT; Sauvageau D; Stein LY
    Front Microbiol; 2018; 9():2239. PubMed ID: 30319568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of methane biodegradation by Methylosinus trichosporium OB3b.
    Rodrigues Ados S; Salgado BV
    Braz J Microbiol; 2009 Apr; 40(2):301-7. PubMed ID: 24031362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions.
    Pfluger AR; Wu WM; Pieja AJ; Wan J; Rostkowski KH; Criddle CS
    Bioresour Technol; 2011 Nov; 102(21):9919-26. PubMed ID: 21906939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment of Methylocystis dominant mixed culture from rice field for PHB production.
    Kulkarni PP; Chavan SB; Deshpande MS; Sagotra D; Kumbhar PS; Ghosalkar AR
    J Biotechnol; 2022 Jan; 343():62-70. PubMed ID: 34838616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methane-based biosynthesis of 4-hydroxybutyrate and P(3-hydroxybutyrate-co-4-hydroxybutyrate) using engineered Methylosinus trichosporium OB3b.
    Nguyen TT; Lee EY
    Bioresour Technol; 2021 Sep; 335():125263. PubMed ID: 34020156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.