These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 37317109)

  • 1. Microfluidics: Insights into Intestinal Microorganisms.
    Qi P; Lv J; Yan X; Bai L; Zhang L
    Microorganisms; 2023 Apr; 11(5):. PubMed ID: 37317109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip.
    Li XG; Chen MX; Zhao SQ; Wang XQ
    Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gut-on-chip: Recreating human intestine in vitro.
    Xiang Y; Wen H; Yu Y; Li M; Fu X; Huang S
    J Tissue Eng; 2020; 11():2041731420965318. PubMed ID: 33282173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of Droplet-Based Microfluidics in Microbial Research].
    Li ZY; Peng X
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 May; 54(3):673-678. PubMed ID: 37248604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic based single cell or droplet manipulation: Methods and applications.
    Lan Y; Zhou Y; Wu M; Jia C; Zhao J
    Talanta; 2023 Dec; 265():124776. PubMed ID: 37348357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Gut-Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology.
    Guo Y; Chen X; Gong P; Li G; Yao W; Yang W
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of microfluidic chips in anticancer drug screening.
    Fan XY; Deng ZF; Yan YY; E Orel V; Shypko A; B Orel V; Ivanova D; Pilarsky C; Tang J; Chen ZS; Zhang JY
    Bosn J Basic Med Sci; 2022 Jun; 22(3):302-314. PubMed ID: 34627135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Gut-on-a-Chip: Fundamentals and Challenges.
    Thomas DP; Zhang J; Nguyen NT; Ta HT
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface behaviors of droplet manipulation in microfluidics devices.
    Wu L; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning with microfluidics for on-chip droplet generation, control, and analysis.
    Sun H; Xie W; Mo J; Huang Y; Dong H
    Front Bioeng Biotechnol; 2023; 11():1208648. PubMed ID: 37351472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food.
    Liang D; Su W; Tan M
    Crit Rev Food Sci Nutr; 2022; 62(16):4418-4434. PubMed ID: 33480263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.
    Niculescu AG; Mihaiescu DE; Grumezescu AM
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab-on-a-chip systems for cancer biomarker diagnosis.
    Özyurt C; Uludağ İ; İnce B; Sezgintürk MK
    J Pharm Biomed Anal; 2023 Mar; 226():115266. PubMed ID: 36706542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics in drug delivery: review of methods and applications.
    Rawas-Qalaji M; Cagliani R; Al-Hashimi N; Al-Dabbagh R; Al-Dabbagh A; Hussain Z
    Pharm Dev Technol; 2023 Jan; 28(1):61-77. PubMed ID: 36592376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review.
    Amir S; Arathi A; Reshma S; Mohanan PV
    Int J Biol Macromol; 2023 Apr; 235():123784. PubMed ID: 36822284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discussion: Embracing microfluidics to advance environmental science and technology.
    Dou J; Yang Z; Singh B; Ma B; Lu Z; Xu J; He Y
    Sci Total Environ; 2024 Aug; 937():173597. PubMed ID: 38810741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.