These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37317155)

  • 21. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate.
    Braz LM; Salazar-Bryam AM; Andrade GSS; Tambourgi EB
    World J Microbiol Biotechnol; 2022 Dec; 39(2):51. PubMed ID: 36544076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp.
    Rehman R; Ali MI; Ali N; Badshah M; Iqbal M; Jamal A; Huang Z
    J Hazard Mater; 2021 Sep; 418():126276. PubMed ID: 34119978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly improved acarbose production of Actinomyces through the combination of ARTP and penicillin susceptible mutant screening.
    Ren F; Chen L; Tong Q
    World J Microbiol Biotechnol; 2017 Jan; 33(1):16. PubMed ID: 27896580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium.
    Gunther NW; Nuñez A; Fett W; Solaiman DK
    Appl Environ Microbiol; 2005 May; 71(5):2288-93. PubMed ID: 15870313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.
    Zhang X; Zhang X; Xu G; Zhang X; Shi J; Xu Z
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5939-5951. PubMed ID: 29725721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of rhamnolipid production from
    Sharma R; Singh J; Verma N
    3 Biotech; 2018 Jan; 8(1):20. PubMed ID: 29276658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of Physicho-chemical Properties and Characterization of Produced Biosurfactant by Selected Indigenous Oil-degrading Bacterium.
    Najmi Z; Ebrahimipour G; Franzetti A; Banat IM
    Iran J Public Health; 2018 Aug; 47(8):1151-1159. PubMed ID: 30186787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil.
    He C; Dong W; Li J; Li Y; Huang C; Ma Y
    Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing transglutaminase production of
    Jiang Y; Shang YP; Li H; Zhang C; Pan J; Bai YP; Li CX; Xu JH
    Bioresour Bioprocess; 2017; 4(1):37. PubMed ID: 28845382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-Cell-Based High-Throughput Cultivation and Functional Characterization of Biosurfactant-Producing Bacteria from Soil and Oilfield-Produced Water.
    Xu Y; Jing Y; Zhang Y; Liu Q; Xiu J; Zhang K; Jia N; Zhou M; Zhou X; Huang J; Nie Y; Wu XL
    Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36363808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Neomycin Sulfate Potency in
    Yu F; Zhang M; Sun J; Wang F; Li X; Liu Y; Wang Z; Zhao X; Li J; Chen J; Du G; Xue Z
    Microorganisms; 2022 Jan; 10(1):. PubMed ID: 35056543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corner Flows Induced by Surfactant-Producing Bacteria Bacillus subtilis and Pseudomonas fluorescens.
    Li Y; Sanfilippo JE; Kearns D; Yang JQ
    Microbiol Spectr; 2022 Oct; 10(5):e0323322. PubMed ID: 36214703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing wuyiencin productivity of Streptomyces albulus (CK15) by mutagenesis breeding with atmospheric and room temperature plasma.
    Thein YW; Shi L; Liu B; Wei Q; Zhang K; Ge B
    World J Microbiol Biotechnol; 2023 May; 39(8):202. PubMed ID: 37209223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge.
    Zhao F; Jiang H; Sun H; Liu C; Han S; Zhang Y
    RSC Adv; 2019 Jan; 9(6):2885-2891. PubMed ID: 35518985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhamnolipids produced by Pseudomonas: from molecular genetics to the market.
    Soberón-Chávez G; González-Valdez A; Soto-Aceves MP; Cocotl-Yañez M
    Microb Biotechnol; 2021 Jan; 14(1):136-146. PubMed ID: 33151628
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioprospecting of rhamnolipids production and optimization by an oil-degrading Pseudomonas sp. S2WE isolated from freshwater lake.
    Phulpoto IA; Wang Y; Qazi MA; Hu B; Ndayisenga F; Yu Z
    Bioresour Technol; 2021 Mar; 323():124601. PubMed ID: 33385627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors.
    Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies.
    Dabaghi S; Ataei SA; Taheri A
    BMC Biotechnol; 2023 Jan; 23(1):2. PubMed ID: 36694155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of
    Haloi S; Sarmah S; Gogoi SB; Medhi T
    3 Biotech; 2020 Mar; 10(3):120. PubMed ID: 32117681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.