These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting. Hen N; Josef E; Davidovich-Pinhas M; Levenberg S; Bianco-Peled H ACS Biomater Sci Eng; 2024 Oct; 10(10):6734-6750. PubMed ID: 39344029 [TBL] [Abstract][Full Text] [Related]
9. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
10. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
11. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
12. In situ 3D bioprinting with bioconcrete bioink. Xie M; Shi Y; Zhang C; Ge M; Zhang J; Chen Z; Fu J; Xie Z; He Y Nat Commun; 2022 Jun; 13(1):3597. PubMed ID: 35739106 [TBL] [Abstract][Full Text] [Related]
13. Regulable Supporting Baths for Embedded Printing of Soft Biomaterials with Variable Stiffness. Li Q; Ma L; Gao Z; Yin J; Liu P; Yang H; Shen L; Zhou H ACS Appl Mater Interfaces; 2022 Sep; 14(37):41695-41711. PubMed ID: 36070996 [TBL] [Abstract][Full Text] [Related]
14. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
15. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
16. Embedded Bioprinting of Tissue-like Structures Using κ-Carrageenan Sub-Microgel Medium. Zhang H; Zhu T; Luo Y; Xu R; Li G; Hu Z; Cao X; Yao J; Chen Y; Zhu Y; Wu K J Vis Exp; 2024 May; (207):. PubMed ID: 38767380 [TBL] [Abstract][Full Text] [Related]
17. Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks. Lee SC; Gillispie G; Prim P; Lee SJ Chem Rev; 2020 Oct; 120(19):10834-10886. PubMed ID: 32815369 [TBL] [Abstract][Full Text] [Related]
18. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
19. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490 [TBL] [Abstract][Full Text] [Related]
20. Embedded Printing of Hydrogels and Watery Suspensions of Cells in Patterned Granular Baths. Trikalitis VD; Perea Paizal J; Rangel V; Stein F; Rouwkema J Tissue Eng Part C Methods; 2024 May; 30(5):206-216. PubMed ID: 38568935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]