These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An induced pluripotent stem cell t(7;12)(q36;p13) acute myeloid leukemia model shows high expression of MNX1 and a block in differentiation of the erythroid and megakaryocytic lineages. Nilsson T; Waraky A; Östlund A; Li S; Staffas A; Asp J; Fogelstrand L; Abrahamsson J; Palmqvist L Int J Cancer; 2022 Sep; 151(5):770-782. PubMed ID: 35583991 [TBL] [Abstract][Full Text] [Related]
4. MNX1-ETV6 fusion gene in an acute megakaryoblastic leukemia and expression of the MNX1 gene in leukemia and normal B cell lines. Taketani T; Taki T; Sako M; Ishii T; Yamaguchi S; Hayashi Y Cancer Genet Cytogenet; 2008 Oct; 186(2):115-9. PubMed ID: 18940475 [TBL] [Abstract][Full Text] [Related]
5. Acute myeloid leukemia (AML) with t(7;12)(q36;p13) is associated with infancy and trisomy 19: Data from Nordic Society for Pediatric Hematology and Oncology (NOPHO-AML) and review of the literature. Espersen ADL; Noren-Nyström U; Abrahamsson J; Ha SY; Pronk CJ; Jahnukainen K; Jónsson ÓG; Lausen B; Palle J; Zeller B; Palmqvist L; Hasle H Genes Chromosomes Cancer; 2018 Jul; 57(7):359-365. PubMed ID: 29569294 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms associated with t(7;12) acute myeloid leukaemia: from genetics to potential treatment targets. Ragusa D; Dijkhuis L; Pina C; Tosi S Biosci Rep; 2023 Jan; 43(1):. PubMed ID: 36622782 [TBL] [Abstract][Full Text] [Related]
7. High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. von Bergh AR; van Drunen E; van Wering ER; van Zutven LJ; Hainmann I; Lönnerholm G; Meijerink JP; Pieters R; Beverloo HB Genes Chromosomes Cancer; 2006 Aug; 45(8):731-9. PubMed ID: 16646086 [TBL] [Abstract][Full Text] [Related]
8. Three-way complex translocations in infant acute myeloid leukemia with t(7;12)(q36;p13): the incidence and correlation of a HLXB9 overexpression. Park J; Kim M; Lim J; Kim Y; Han K; Lee J; Chung NG; Cho B; Kim HK Cancer Genet Cytogenet; 2009 Jun; 191(2):102-5. PubMed ID: 19446746 [TBL] [Abstract][Full Text] [Related]
9. Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia. van Dijk AD; Hoff FW; Qiu YH; Chandra J; Jabbour E; de Bont ESJM; Horton TM; Kornblau SM Clin Epigenetics; 2021 Jan; 13(1):21. PubMed ID: 33509276 [TBL] [Abstract][Full Text] [Related]
10. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Rawat VP; Cusan M; Deshpande A; Hiddemann W; Quintanilla-Martinez L; Humphries RK; Bohlander SK; Feuring-Buske M; Buske C Proc Natl Acad Sci U S A; 2004 Jan; 101(3):817-22. PubMed ID: 14718672 [TBL] [Abstract][Full Text] [Related]
11. t(7;12)(q36;p13) and t(7;12)(q32;p13)--translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Slater RM; von Drunen E; Kroes WG; Weghuis DO; van den Berg E; Smit EM; van der Does-van den Berg A; van Wering E; Hählen K; Carroll AJ; Raimondi SC; Beverloo HB Leukemia; 2001 Jun; 15(6):915-20. PubMed ID: 11417477 [TBL] [Abstract][Full Text] [Related]
12. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Müller-Tidow C; Klein HU; Hascher A; Isken F; Tickenbrock L; Thoennissen N; Agrawal-Singh S; Tschanter P; Disselhoff C; Wang Y; Becker A; Thiede C; Ehninger G; zur Stadt U; Koschmieder S; Seidl M; Müller FU; Schmitz W; Schlenke P; McClelland M; Berdel WE; Dugas M; Serve H; Blood; 2010 Nov; 116(18):3564-71. PubMed ID: 20498303 [TBL] [Abstract][Full Text] [Related]
13. MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML. Larmonie NSD; Arentsen-Peters TCJM; Obulkasim A; Valerio D; Sonneveld E; Danen-van Oorschot AA; de Haas V; Reinhardt D; Zimmermann M; Trka J; Baruchel A; Pieters R; van den Heuvel-Eibrink MM; Zwaan CM; Fornerod M Oncogene; 2018 Jan; 37(1):107-115. PubMed ID: 28892045 [TBL] [Abstract][Full Text] [Related]
14. Perturbation of Methionine/S-adenosylmethionine Metabolism as a Novel Vulnerability in MLL Rearranged Leukemia. Barve A; Vega A; Shah PP; Ghare S; Casson L; Wunderlich M; Siskind LJ; Beverly LJ Cells; 2019 Oct; 8(11):. PubMed ID: 31717699 [TBL] [Abstract][Full Text] [Related]
15. Evolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy. Boila LD; Sengupta A Exp Hematol; 2020 Dec; 92():19-31. PubMed ID: 32950598 [TBL] [Abstract][Full Text] [Related]
16. Modifications of H3K4 methylation levels are associated with DNA hypermethylation in acute myeloid leukemia. Scalea S; Maresca C; Catalanotto C; Marino R; Cogoni C; Reale A; Zampieri M; Zardo G FEBS J; 2020 Mar; 287(6):1155-1175. PubMed ID: 31599112 [TBL] [Abstract][Full Text] [Related]
17. Engineered model of t(7;12)(q36;p13) AML recapitulates patient-specific features and gene expression profiles. Ragusa D; Cicirò Y; Federico C; Saccone S; Bruno F; Saeedi R; Sisu C; Pina C; Sala A; Tosi S Oncogenesis; 2022 Sep; 11(1):50. PubMed ID: 36057683 [TBL] [Abstract][Full Text] [Related]
18. Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Paul TA; Bies J; Small D; Wolff L Blood; 2010 Apr; 115(15):3098-108. PubMed ID: 20190193 [TBL] [Abstract][Full Text] [Related]
19. Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLL‑AF9 translocation. Wang F; Li Z; Wang G; Tian X; Zhou J; Yu W; Fan Z; Dong L; Lu J; Xu J; Zhang W; Liang A Mol Med Rep; 2020 Feb; 21(2):883-893. PubMed ID: 31789407 [TBL] [Abstract][Full Text] [Related]