These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37318076)

  • 1. A novel micromorphic approach captures non-locality in continuum bone remodelling.
    Titlbach A; Papastavrou A; McBride A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):1042-1055. PubMed ID: 37318076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A peridynamic formulation for nonlocal bone remodelling.
    Schaller E; Javili A; Schmidt I; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2022 Dec; 25(16):1835-1851. PubMed ID: 35435781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling.
    Schmidt I; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(11):1274-1285. PubMed ID: 33557603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of bone remodelling with piezoelectric effects using an open-source framework.
    Bansod YD; Kebbach M; Kluess D; Bader R; van Rienen U
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1147-1166. PubMed ID: 33740158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of bone remodelling after Duracon knee arthroplasty using a thermodynamic-based model.
    Bougherara H; Nazgooei S; Sayyidmousavi A; Marsik F; Marík IA
    Proc Inst Mech Eng H; 2011 Jul; 225(7):669-79. PubMed ID: 21870374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric investigation of load-induced structure remodeling in the proximal femur.
    Marzban A; Canavan P; Warner G; Vaziri A; Nayeb-Hashemi H
    Proc Inst Mech Eng H; 2012 Jun; 226(6):450-60. PubMed ID: 22783761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On biological availability dependent bone remodeling.
    Papastavrou A; Schmidt I; Steinmann P
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):432-444. PubMed ID: 32126825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of planes within reduced micromorphic model.
    Dhaba ARE; Mousavi SM
    Sci Rep; 2021 Jul; 11(1):15537. PubMed ID: 34330968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified framework of cell population dynamics and mechanical stimulus using a discrete approach in bone remodelling.
    Quexada D; Ramtani S; Trabelsi O; Marquez K; Marie-Christine ; Linero Segrera DL; Duque-Daza C; Garzón Alvarado DA
    Comput Methods Biomech Biomed Engin; 2023 Mar; 26(4):399-411. PubMed ID: 35587027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement.
    Doblaré M; García JM
    J Biomech; 2001 Sep; 34(9):1157-70. PubMed ID: 11506786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach.
    Jacobs CR; Levenston ME; Beaupré GS; Simo JC; Carter DR
    J Biomech; 1995 Apr; 28(4):449-59. PubMed ID: 7738054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone.
    Pérez MA; Fornells P; Doblaré M; García-Aznar JM
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):71-80. PubMed ID: 19697182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling.
    Jang IG; Kim IY
    J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law.
    Belinha J; Jorge RM; Dinis LM
    Comput Methods Biomech Biomed Engin; 2013; 16(11):1170-84. PubMed ID: 22309146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale poroelastic metamodel for efficient mesoscale bone remodelling simulations.
    Villette CC; Phillips ATM
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2077-2091. PubMed ID: 28795282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.