These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37318076)

  • 21. Numerical simulation of load-induced bone structural remodelling using stress-limit criterion.
    Marzban A; Nayeb-Hashemi H; Vaziri A
    Comput Methods Biomech Biomed Engin; 2015; 18(3):259-68. PubMed ID: 23697838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical modeling of bone tissue adaptation--a hierarchical approach for bone apparent density and trabecular structure.
    Coelho PG; Fernandes PR; Rodrigues HC; Cardoso JB; Guedes JM
    J Biomech; 2009 May; 42(7):830-7. PubMed ID: 19269639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Femoral bone mineral density distribution is dominantly regulated by strain energy density in remodeling.
    Zhang Y; Luo Y
    Biomed Mater Eng; 2020; 31(3):179-190. PubMed ID: 32597795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone fracture healing within a continuum bone remodelling framework.
    Schmidt I; Albert J; Ritthaler M; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2022 Jul; 25(9):1040-1050. PubMed ID: 34730042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling.
    Kerner J; Huiskes R; van Lenthe GH; Weinans H; van Rietbergen B; Engh CA; Amis AA
    J Biomech; 1999 Jul; 32(7):695-703. PubMed ID: 10400357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The behavior of adaptive bone-remodeling simulation models.
    Weinans H; Huiskes R; Grootenboer HJ
    J Biomech; 1992 Dec; 25(12):1425-41. PubMed ID: 1491020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A three-dimensional finite analysis of adaptive remodelling in the proximal femur.
    Stülpner MA; Reddy BD; Starke GR; Spirakis A
    J Biomech; 1997 Oct; 30(10):1063-6. PubMed ID: 9391874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone remodelling in implanted proximal femur using topology optimization and parameterized cellular model.
    Mathai B; Dhara S; Gupta S
    J Mech Behav Biomed Mater; 2022 Jan; 125():104903. PubMed ID: 34717117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.
    Geraldes DM; Modenese L; Phillips AT
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1029-42. PubMed ID: 26578078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory.
    Mengoni M; Ponthot JP
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1367-76. PubMed ID: 24697274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation.
    Cen H; Yao Y; Liu H; Jia S; Gong H
    Bone; 2021 Dec; 153():116125. PubMed ID: 34280582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A contact model with ingrowth control for bone remodelling around cementless stems.
    Fernandes PR; Folgado J; Jacobs C; Pellegrini V
    J Biomech; 2002 Feb; 35(2):167-76. PubMed ID: 11784535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mammalian cortical bone in tension is non-Haversian.
    Mayya A; Banerjee A; Rajesh R
    Sci Rep; 2013; 3():2533. PubMed ID: 23982482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bone remodelling model including the effect of damage on the steering of BMUs.
    Martínez-Reina J; Reina I; Domínguez J; García-Aznar JM
    J Mech Behav Biomed Mater; 2014 Apr; 32():99-112. PubMed ID: 24445006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone remodelling of a proximal femur with the thrust plate prosthesis: an in vitro case.
    Taylor WR; Ploeg H; Hertig D; Warner MD; Clift SE
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):131-7. PubMed ID: 15512756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age and gender effects on bone mass density variation: finite elements simulation.
    Barkaoui A; Ben Kahla R; Merzouki T; Hambli R
    Biomech Model Mechanobiol; 2017 Apr; 16(2):521-535. PubMed ID: 27659482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements.
    Zauel R; Yeni YN; Bay BK; Dong XN; Fyhrie DP
    J Biomech Eng; 2006 Feb; 128(1):1-6. PubMed ID: 16532610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.