These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 37318201)

  • 1. Layered Structures of Enriched V
    Selvam T; Dhinasekaran D; Subramanian B; Rajendran AR
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30350-30359. PubMed ID: 37318201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defective construction of vanadium-based cathode materials for high-rate long-cycle aqueous zinc ion batteries.
    Ran K; Chen Q; Song F; Yang F
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):673-686. PubMed ID: 37741175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode.
    Xia C; Guo J; Li P; Zhang X; Alshareef HN
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yttrium Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Composite Cathode Material for Aqueous Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Guo W; Fu Y
    Small Methods; 2021 Sep; 5(9):e2100544. PubMed ID: 34928051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability.
    Lee SH; Han J; Cho TW; Kim GH; Yoo YJ; Park J; Kim YJ; Lee EJ; Lee S; Mhin S; Park SY; Yoo J; Lee SH
    Nanoscale; 2023 Feb; 15(8):3737-3748. PubMed ID: 36744925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Engineering Coupled Valence Tuning of MoO
    Liu Y; Wang J; Zeng Y; Liu J; Liu X; Lu X
    Small; 2020 Mar; 16(11):e1907458. PubMed ID: 32068969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-Ion Batteries.
    Sun Q; Cheng H; Nie W; Lu X; Zhao H
    Chem Asian J; 2022 Apr; 17(7):e202200067. PubMed ID: 35188329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries.
    Li C; Li M; Xu H; Zhao F; Gong S; Wang H; Qi J; Wang Z; Fan X; Peng W; Liu J
    J Colloid Interface Sci; 2022 Oct; 623():277-284. PubMed ID: 35597011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges, and Strategies.
    Zhu K; Yang W
    Acc Chem Res; 2024 Oct; 57(19):2887-2900. PubMed ID: 39279672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous layered ZnV
    Dai B; Shen X; Chen T; Li J; Xu Q
    Dalton Trans; 2024 May; 53(19):8335-8346. PubMed ID: 38666487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-Dimensional (2D/3D/3D) Heterostructured Vanadium Oxide with Rich Oxygen Vacancies for Aqueous Zinc Ion Batteries with High Capacity and Long Cycling Life.
    Xie XL; Wang S; Gu DW; Yao ZY; Zou Y; Ren XM
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8679-8687. PubMed ID: 38324753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries.
    Xu G; Zhang Y; Gong Z; Lu T; Pan L
    J Colloid Interface Sci; 2021 Jul; 593():417-423. PubMed ID: 33744550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterojunction tunnelled vanadium-based cathode materials for high-performance aqueous zinc ion batteries.
    Hu H; Zhao P; Li X; Liu J; Liu H; Sun B; Pan K; Song K; Cheng H
    J Colloid Interface Sci; 2024 Jul; 665():564-572. PubMed ID: 38552573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separator-free Zn-ion Battery with Mn:V
    Naskar S; Deepa M
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36262-36279. PubMed ID: 37470169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic-Inorganic Hybrid Cathode with Dual Energy-Storage Mechanism for Ultrahigh-Rate and Ultralong-Life Aqueous Zinc-Ion Batteries.
    Ma X; Cao X; Yao M; Shan L; Shi X; Fang G; Pan A; Lu B; Zhou J; Liang S
    Adv Mater; 2022 Feb; 34(6):e2105452. PubMed ID: 34786778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen defects engineering and structural strengthening of hydrated vanadium oxide cathode by coating glucose hydrothermal carbon and pre-embedding Mn (II) ion for high-capacity aqueous zinc ion batteries.
    Liu R; Zhang J; Huang C; Dong C; Xu L; Zhu B; Wang L; Zhang L; Chen L
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):279-288. PubMed ID: 37844499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries.
    Jiang Y; Lu J; Liu W; Xing C; Lu S; Liu X; Xu Y; Zhang J; Zhao B
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17415-17425. PubMed ID: 35389628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries.
    Zhao Y; Zhang P; Liang J; Xia X; Ren L; Song L; Liu W; Sun X
    Adv Mater; 2022 Sep; 34(37):e2204320. PubMed ID: 35901506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Layered CaV
    Fang L; Lin L; Wu Z; Xu T; Wang X; Chang L; Nie P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.