These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37318599)
1. Stochastic differential equation modelling of cancer cell migration and tissue invasion. Katsaounis D; Chaplain MAJ; Sfakianakis N J Math Biol; 2023 Jun; 87(1):8. PubMed ID: 37318599 [TBL] [Abstract][Full Text] [Related]
2. A Genuinely Hybrid, Multiscale 3D Cancer Invasion and Metastasis Modelling Framework. Katsaounis D; Harbour N; Williams T; Chaplain MA; Sfakianakis N Bull Math Biol; 2024 Apr; 86(6):64. PubMed ID: 38664343 [TBL] [Abstract][Full Text] [Related]
3. Modeling tumor cell migration: From microscopic to macroscopic models. Deroulers C; Aubert M; Badoual M; Grammaticos B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031917. PubMed ID: 19391981 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the roles of random motility and directed motility using advection-diffusion theory for a 3T3 fibroblast cell migration assay stimulated with an electric field. Simpson MJ; Lo KY; Sun YS BMC Syst Biol; 2017 Mar; 11(1):39. PubMed ID: 28302111 [TBL] [Abstract][Full Text] [Related]
5. Discrete and continuous mathematical models of sharp-fronted collective cell migration and invasion. Simpson MJ; Murphy KM; McCue SW; Buenzli PR R Soc Open Sci; 2024 May; 11(5):240126. PubMed ID: 39076824 [TBL] [Abstract][Full Text] [Related]
6. Modeling fish population movements: from an individual-based representation to an advection-diffusion equation. Faugeras B; Maury O J Theor Biol; 2007 Aug; 247(4):837-48. PubMed ID: 17521675 [TBL] [Abstract][Full Text] [Related]
7. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. Gerisch A; Chaplain MA J Theor Biol; 2008 Feb; 250(4):684-704. PubMed ID: 18068728 [TBL] [Abstract][Full Text] [Related]
8. From microscopic to macroscopic descriptions of cell migration on growing domains. Baker RE; Yates CA; Erban R Bull Math Biol; 2010 Apr; 72(3):719-62. PubMed ID: 19862577 [TBL] [Abstract][Full Text] [Related]
9. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion. Yates CA; Flegg MB J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527 [TBL] [Abstract][Full Text] [Related]
10. Hybrid models of chemotaxis with application to leukocyte migration. Lu H; Um K; Tartakovsky DM J Math Biol; 2021 Mar; 82(4):23. PubMed ID: 33646399 [TBL] [Abstract][Full Text] [Related]
11. Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis. Malik AA; Gerlee P J Math Biol; 2019 Jun; 78(7):2289-2315. PubMed ID: 30972438 [TBL] [Abstract][Full Text] [Related]
12. Going from microscopic to macroscopic on nonuniform growing domains. Yates CA; Baker RE; Erban R; Maini PK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021921. PubMed ID: 23005799 [TBL] [Abstract][Full Text] [Related]
13. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model. Joshi TV; Avitabile D; Owen MR Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576 [TBL] [Abstract][Full Text] [Related]
14. Glioma invasion and its interplay with nervous tissue and therapy: A multiscale model. Conte M; Gerardo-Giorda L; Groppi M J Theor Biol; 2020 Feb; 486():110088. PubMed ID: 31756339 [TBL] [Abstract][Full Text] [Related]
15. Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations. Kang HW; Erban R Bull Math Biol; 2019 Aug; 81(8):3185-3213. PubMed ID: 31165406 [TBL] [Abstract][Full Text] [Related]
16. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth. Lecca P; Morpurgo D BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S14. PubMed ID: 23095709 [TBL] [Abstract][Full Text] [Related]
17. Stochastic modelling of biased cell migration and collagen matrix modification. Groh A; Louis AK J Math Biol; 2010 Nov; 61(5):617-47. PubMed ID: 20012047 [TBL] [Abstract][Full Text] [Related]
18. Modeling biological tissue growth: discrete to continuum representations. Hywood JD; Hackett-Jones EJ; Landman KA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032704. PubMed ID: 24125291 [TBL] [Abstract][Full Text] [Related]
19. Multiscale modelling of cancer response to oncolytic viral therapy. Alzahrani T; Eftimie R; Trucu D Math Biosci; 2019 Apr; 310():76-95. PubMed ID: 30731098 [TBL] [Abstract][Full Text] [Related]
20. Effective equations for anisotropic glioma spread with proliferation: a multiscale approach and comparisons with previous settings. Engwer C; Hunt A; Surulescu C Math Med Biol; 2016 Dec; 33(4):435-459. PubMed ID: 26363335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]