These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37318880)

  • 1. Quantitative Low-Field
    Tang B; Chong K; Ragauskas AJ; Evans R
    ChemSusChem; 2023 Sep; 16(17):e202300625. PubMed ID: 37318880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Low-Field
    Tang B; Chong K; Ragauskas AJ; Evans R
    ChemSusChem; 2023 Sep; 16(17):e202301127. PubMed ID: 37609803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass.
    Zhang C; Zhang ZC
    Chem Rec; 2019 Sep; 19(9):2044-2057. PubMed ID: 31483089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using
    Negahdar L; Gonzalez-Quiroga A; Otyuskaya D; Toraman HE; Liu L; Jastrzebski JT; Van Geem KM; Marin GB; Thybaut JW; Weckhuysen BM
    ACS Sustain Chem Eng; 2016 Sep; 4(9):4974-4985. PubMed ID: 27668136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of LDI and MALDI for the Characterization of a Lignocellulosic-Based Pyrolysis Bio-Oil.
    Mase C; Maillard JF; Marcuz S; Hubert-Roux M; Afonso C; Giusti P
    J Am Soc Mass Spectrom; 2023 Aug; 34(8):1789-1797. PubMed ID: 37477530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization.
    Ben H; Ragauskas AJ
    Bioresour Technol; 2013 Nov; 147():577-584. PubMed ID: 24013295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis Oil Biorefinery.
    Meier D
    Adv Biochem Eng Biotechnol; 2019; 166():301-337. PubMed ID: 28289770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography.
    Omais B; Crepier J; Charon N; Courtiade M; Quignard A; Thiébaut D
    Analyst; 2013 Apr; 138(8):2258-68. PubMed ID: 23439667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2016 Dec; 221():645-655. PubMed ID: 27671343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and characterization of bio-oil obtained from the slow pyrolysis of cooked food waste at various temperatures.
    Modak S; Katiyar P; Yadav S; Jain S; Gole B; Talukdar D
    Waste Manag; 2023 Mar; 158():23-36. PubMed ID: 36628813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock.
    Lu K; Hao N; Meng X; Luo Z; Tuskan GA; Ragauskas AJ
    Bioresour Technol; 2019 Oct; 289():121589. PubMed ID: 31207412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on characteristics of the bio-oil from microwave-assisted pyrolysis of lignocellulose and triacylglycerol.
    Dai L; Wang Y; Liu Y; Ruan R; Yu Z; Jiang L
    Sci Total Environ; 2019 Apr; 659():95-100. PubMed ID: 30597473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of benchtop low-field NMR spectrometers in the refining industry: A multivariate calibration approach for rapid characterization of crude oils.
    Sassu L; Puligheddu S; Puligheddu C; Palomba S; Muru E; Mattia C; Allevi C
    Magn Reson Chem; 2020 Dec; 58(12):1222-1233. PubMed ID: 32869885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.
    Schnitzer MI; Monreal CM; Jandl G
    J Environ Sci Health B; 2008 Jan; 43(1):81-95. PubMed ID: 18161578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method.
    Black S; Ferrell JR
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological Perspectives of Pyrolysis Oil for a Bio-Based Economy.
    Arnold S; Moss K; Henkel M; Hausmann R
    Trends Biotechnol; 2017 Oct; 35(10):925-936. PubMed ID: 28666545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical evaluation of pyrolysis oils from domestic and industrial effluent treatment station sludges with perspective to produce value-added products.
    Rodrigues JL; Campêlo JM; Wisniewski A; Hantao LW; Eberlin MN; Santos JM
    Waste Manag; 2023 Aug; 168():202-210. PubMed ID: 37311387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.