These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37318921)

  • 41. Integrating remotely sensed surface water extent into continental scale hydrology.
    Revilla-Romero B; Wanders N; Burek P; Salamon P; de Roo A
    J Hydrol (Amst); 2016 Dec; 543(Pt B):659-670. PubMed ID: 28111480
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrological model-based streamflow reconstruction for Indian sub-continental river basins, 1951-2021.
    Chuphal DS; Mishra V
    Sci Data; 2023 Oct; 10(1):717. PubMed ID: 37853036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AI-driven predictions of geophysical river flows with vegetation.
    Kumar S; Agarwal M; Deshpande V; Cooper JR; Khosravi K; Rathnayake N; Hoshino Y; Kantamaneni K; Rathnayake U
    Sci Rep; 2024 Jul; 14(1):16368. PubMed ID: 39014084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modelling the effects of meteorological parameters on water temperature using artificial neural networks.
    Temizyurek M; Dadaser-Celik F
    Water Sci Technol; 2018 Mar; 77(5-6):1724-1733. PubMed ID: 29595175
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios.
    Shukla S; Jain SK; Kansal ML
    Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion.
    Wegayehu EB; Muluneh FB
    Heliyon; 2023 Jul; 9(7):e17982. PubMed ID: 37449175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan.
    Chiang LC; Chuang YT; Han CC
    Int J Environ Res Public Health; 2019 Jan; 16(2):. PubMed ID: 30669282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimating the incubated river water quality indicator based on machine learning and deep learning paradigms: BOD5 Prediction.
    Kim S; Alizamir M; Seo Y; Heddam S; Chung IM; Kim YO; Kisi O; Singh VP
    Math Biosci Eng; 2022 Sep; 19(12):12744-12773. PubMed ID: 36654020
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A copula model of extracting DEM-based cross-sections for estimating ecological flow regimes in data-limited deltaic-branched river systems.
    Biswal S; Sahoo B; Jha MK; Bhuyan MK
    J Environ Manage; 2023 Sep; 342():118095. PubMed ID: 37187075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing the biochemical oxygen demand using neural networks and ensemble tree approaches in South Korea.
    Kim S; Alizamir M; Zounemat-Kermani M; Kisi O; Singh VP
    J Environ Manage; 2020 Sep; 270():110834. PubMed ID: 32507742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrological drought forecasting and monitoring system development using artificial neural network (ANN) in Ethiopia.
    Tareke KA; Awoke AG
    Heliyon; 2023 Feb; 9(2):e13287. PubMed ID: 36816247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of Flood Discharge Using Hybrid PSO-SVM Algorithm in Barak River Basin.
    Samantaray S; Sahoo A; Agnihotri A
    MethodsX; 2023; 10():102060. PubMed ID: 36865648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermal evaluation of urbanization using a hybrid approach.
    Ketabchy M; Sample DJ; Wynn-Thompson T; Nayeb Yazdi M
    J Environ Manage; 2018 Nov; 226():457-475. PubMed ID: 30145502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water Table Depth Estimates over the Contiguous United States Using a Random Forest Model.
    Ma Y; Leonarduzzi E; Defnet A; Melchior P; Condon LE; Maxwell RM
    Ground Water; 2024; 62(1):34-43. PubMed ID: 37797066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-quality reconstruction of China's natural streamflow.
    Miao C; Gou J; Fu B; Tang Q; Duan Q; Chen Z; Lei H; Chen J; Guo J; Borthwick AGL; Ding W; Duan X; Li Y; Kong D; Guo X; Wu J
    Sci Bull (Beijing); 2022 Mar; 67(5):547-556. PubMed ID: 36546176
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparative evaluation of streamflow prediction using the SWAT and NNAR models in the Meenachil River Basin of Central Kerala, India.
    Saranya MS; Vinish VN
    Water Sci Technol; 2023 Oct; 88(8):2002-2018. PubMed ID: 37906455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing the impacts of historical and future land use and climate change on the streamflow and sediment yield of a tropical mountainous river basin in South India.
    Sinha RK; Eldho TI; Subimal G
    Environ Monit Assess; 2020 Oct; 192(11):679. PubMed ID: 33025331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Streamflow Prediction Using Complex Networks.
    Farhat AW; Deepthi B; Sivakumar B
    Entropy (Basel); 2024 Jul; 26(7):. PubMed ID: 39056971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trend, abrupt change, and periodicity of streamflow in the mainstream of Yellow River.
    He B; Miao C; Shi W
    Environ Monit Assess; 2013 Jul; 185(7):6187-99. PubMed ID: 23307047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.