These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37319377)

  • 1. Printing Double-Network Tough Hydrogels Using Temperature-Controlled Projection Stereolithography (TOPS).
    Kunwar P; Andrada BL; Poudel A; Xiong Z; Aryal U; Geffert ZJ; Poudel S; Fougnier D; Gitsov I; Soman P
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30780-30792. PubMed ID: 37319377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution 3D Printing of Stretchable Hydrogel Structures Using Optical Projection Lithography.
    Kunwar P; Jannini AVS; Xiong Z; Ransbottom MJ; Perkins JS; Henderson JH; Hasenwinkel JM; Soman P
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1640-1649. PubMed ID: 31833757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor.
    Liu S; Li L
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26429-26437. PubMed ID: 28707465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recoverable and Self-Healing Double Network Hydrogel Based on κ-Carrageenan.
    Liu S; Li L
    ACS Appl Mater Interfaces; 2016 Nov; 8(43):29749-29758. PubMed ID: 27723297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application.
    Deng Y; Huang M; Sun D; Hou Y; Li Y; Dong T; Wang X; Zhang L; Yang W
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37544-37554. PubMed ID: 30296052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-Network Tough Hydrogels: A Brief Review on Achievements and Challenges.
    Xin H
    Gels; 2022 Apr; 8(4):. PubMed ID: 35448148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications.
    Deng Z; Qian T; Hang F
    ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage.
    Yang F; Tadepalli V; Wiley BJ
    ACS Biomater Sci Eng; 2017 May; 3(5):863-869. PubMed ID: 33440506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical stereolithography of antifouling zwitterionic hydrogels.
    Pan W; Wallin TJ; Odent J; Yip MC; Mosadegh B; Shepherd RF; Giannelis EP
    J Mater Chem B; 2019 May; 7(17):2855-2864. PubMed ID: 32255088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion printing of ionic-covalent entanglement hydrogels with high toughness.
    Bakarich SE; Panhuis MIH; Beirne S; Wallace GG; Spinks GM
    J Mater Chem B; 2013 Oct; 1(38):4939-4946. PubMed ID: 32261083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial cellulose reinforced double-network hydrogels for shape memory strand.
    Hua J; Liu C; Ng PF; Fei B
    Carbohydr Polym; 2021 May; 259():117737. PubMed ID: 33673998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography.
    Han D; Lu Z; Chester SA; Lee H
    Sci Rep; 2018 Jan; 8(1):1963. PubMed ID: 29386555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a High-Strength, Tough, Swelling-Resistant, Conductive Hydrogel via Ion Cross-Linking, Directional Freeze-Drying, and Rehydration.
    Luo J; Wang H; Wang J; Chen Y; Li C; Zhong K; Xiang J; Jia P
    ACS Biomater Sci Eng; 2023 May; 9(5):2694-2705. PubMed ID: 37000674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.