BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37320910)

  • 1. A comparison of the psychological effects of robot motion in physical and virtual environments.
    Sanders NE; Xie Z; Chen KB
    Appl Ergon; 2023 Oct; 112():104039. PubMed ID: 37320910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of the efficacy of collaborative virtual reality systems for moderated remote usability testing.
    Chalil Madathil K; Greenstein JS
    Appl Ergon; 2017 Nov; 65():501-514. PubMed ID: 28256209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imposing Motion Variability for Ergonomic Human-Robot Collaboration.
    Zolotas M; Luo R; Bazzi S; Saha D; Mabulu K; Kloeckl K; Padır T
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):123-134. PubMed ID: 38498062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three different techniques for camera and motion control of a teleoperated robot.
    Doisy G; Ronen A; Edan Y
    Appl Ergon; 2017 Jan; 58():527-534. PubMed ID: 27181096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye-Tracking in Physical Human-Robot Interaction: Mental Workload and Performance Prediction.
    Upasani S; Srinivasan D; Zhu Q; Du J; Leonessa A
    Hum Factors; 2024 Aug; 66(8):2104-2119. PubMed ID: 37793896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.
    Lin DW; Romanelli JR; Kuhn JN; Thompson RE; Bush RW; Seymour NE
    Surg Endosc; 2009 Jan; 23(1):209-14. PubMed ID: 18297349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration.
    John AR; Singh AK; Gramann K; Liu D; Lin CT
    J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of an Integrated Virtual Reality System with Wearable Sensors for Ergonomic Evaluation of Human-Robot Cooperative Workplaces.
    Caporaso T; Grazioso S; Di Gironimo G
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validating advanced robot-assisted laparoscopic training task in virtual reality.
    Brown-Clerk B; Siu KC; Katsavelis D; Lee I; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2008; 132():45-9. PubMed ID: 18391254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haptic and Visual Feedback Assistance for Dual-Arm Robot Teleoperation in Surface Conditioning Tasks.
    Girbes-Juan V; Schettino V; Demiris Y; Tornero J
    IEEE Trans Haptics; 2021; 14(1):44-56. PubMed ID: 32746376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistency of performance of robot-assisted surgical tasks in virtual reality.
    Suh IH; Siu KC; Mukherjee M; Monk E; Oleynikov D; Stergiou N
    Stud Health Technol Inform; 2009; 142():369-73. PubMed ID: 19377186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence on the user's emotional state of the graphic complexity level in virtual therapies based on a robot-assisted neuro-rehabilitation platform.
    Villar BF; Viñas PF; Turiel JP; Carlos Fraile Marinero J; Gordaliza A
    Comput Methods Programs Biomed; 2020 Jul; 190():105359. PubMed ID: 32036205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-Assisted Reaching Performance of Chronic Stroke and Healthy Individuals in a Virtual Versus a Physical Environment: A Pilot Study.
    Norouzi-Gheidari N; Archambault PS; Fung J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1273-1281. PubMed ID: 31056500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task.
    Faure C; Fortin-Cote A; Robitaille N; Cardou P; Gosselin C; Laurendeau D; Mercier C; Bouyer L; McFadyen BJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2246-2254. PubMed ID: 32877337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual environments applications and applied ergonomics.
    Wilson JR
    Appl Ergon; 1999 Feb; 30(1):3-9. PubMed ID: 10098812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stress and workload of virtual reality training: the effects of presence, immersion and flow.
    Lackey SJ; Salcedo JN; Szalma JL; Hancock PA
    Ergonomics; 2016 Aug; 59(8):1060-72. PubMed ID: 26977540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on ergonomics evaluations of virtual reality.
    Chen Y; Wu Z
    Work; 2023; 74(3):831-841. PubMed ID: 36442175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Twin-Driven Human Robot Collaboration Using a Digital Human.
    Maruyama T; Ueshiba T; Tada M; Toda H; Endo Y; Domae Y; Nakabo Y; Mori T; Suita K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.