BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37320923)

  • 1. Bioelectrochemical stability improvement by Ce-N modified carbon-based cathode in high-salt stress and mechanism research.
    Fan M; Du L; Li H; Yuan Q; Wu X; Chen Y; Liu J
    J Environ Manage; 2023 Sep; 342():118351. PubMed ID: 37320923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.
    Zhang X; Xia X; Ivanov I; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(3):2075-81. PubMed ID: 24422458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.
    Wang Y; Wu J; Yang S; Li H; Li X
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29954125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Tang C; Dai Y; Zhang X; Tai Y; Tao R; Ruan W
    Sci Total Environ; 2022 Feb; 808():152078. PubMed ID: 34863746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.
    Yang W; Logan BE
    ChemSusChem; 2016 Aug; 9(16):2226-32. PubMed ID: 27416965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells.
    An J; Li N; Wan L; Zhou L; Du Q; Li T; Wang X
    Water Res; 2017 Oct; 123():369-377. PubMed ID: 28686939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.
    Pan Y; Mo X; Li K; Pu L; Liu D; Yang T
    Bioresour Technol; 2016 Apr; 206():285-289. PubMed ID: 26898678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency electrochemical separation of uranium(VI) from uranium-containing wastewater by microbial fuel cells with different cathodes.
    Sun D; Lv C; Hua Y; Li M; Zhang X; Fang Q; Cai T; Wu X
    Bioelectrochemistry; 2023 Jun; 151():108393. PubMed ID: 36739701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.
    Mohamed HO; Obaid M; Sayed ET; Liu Y; Lee J; Park M; Barakat NAM; Kim HY
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1151-1161. PubMed ID: 28526899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F; Pant D; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):49-55. PubMed ID: 21937216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypersaline microbial fuel cell equipped with an oxygen-reducing microbial cathode.
    Rimboud M; Etcheverry L; Barakat M; Achouak W; Bergel A; Délia ML
    Bioresour Technol; 2021 Oct; 337():125448. PubMed ID: 34320736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
    Xia X; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7862-6. PubMed ID: 23902951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing oxygen reduction reaction by using metal-free nitrogen-doped carbon black as cathode catalysts in microbial fuel cells treating wastewater.
    Wang X; Yuan C; Shao C; Zhuang S; Ye J; Li B
    Environ Res; 2020 Mar; 182():109011. PubMed ID: 31837548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells.
    Cheng S; Wu J
    Bioelectrochemistry; 2013 Aug; 92():22-6. PubMed ID: 23567144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.
    Yang W; Watson VJ; Logan BE
    Environ Sci Technol; 2016 Aug; 50(16):8904-9. PubMed ID: 27414751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells.
    Yang W; Rossi R; Tian Y; Kim KY; Logan BE
    Bioresour Technol; 2018 Feb; 249():1080-1084. PubMed ID: 29137930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binder-free NiO/MnO
    Huang SJ; Dwivedi KA; Kumar S; Wang CT; Yadav AK
    Environ Pollut; 2023 Jan; 317():120578. PubMed ID: 36395905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel trickling microbial fuel cells for electricity generation from wastewater.
    Gao N; Fan Y; Long F; Qiu Y; Geier W; Liu H
    Chemosphere; 2020 Jun; 248():126058. PubMed ID: 32045974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.