BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37321051)

  • 1. Development of a 3D printing process of bolus using BolusCM material for radiotherapy with electrons.
    Diaz-Merchan JA; Martinez-Ovalle SA; Vega-Carrillo HR
    Appl Radiat Isot; 2023 Sep; 199():110899. PubMed ID: 37321051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer.
    Canters RA; Lips IM; Wendling M; Kusters M; van Zeeland M; Gerritsen RM; Poortmans P; Verhoef CG
    Radiother Oncol; 2016 Oct; 121(1):148-153. PubMed ID: 27475278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a 3D-printed bolus cap for total scalp irradiation.
    Baltz GC; Chi PM; Wong PF; Wang C; Craft DF; Kry SF; Lin SSH; Garden AS; Smith SA; Howell RM
    J Appl Clin Med Phys; 2019 Mar; 20(3):89-96. PubMed ID: 30821903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy.
    Madamesila J; McGeachy P; Villarreal Barajas JE; Khan R
    Phys Med; 2016 Jan; 32(1):242-7. PubMed ID: 26508016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed copper-plastic composite material for use as a radiotherapy bolus.
    Ehler ED; Sterling DA
    Phys Med; 2020 Aug; 76():202-206. PubMed ID: 32707484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modern mold room: Meshing 3D surface scanning, digital design, and 3D printing with bolus fabrication.
    Sasaki DK; McGeachy P; Alpuche Aviles JE; McCurdy B; Koul R; Dubey A
    J Appl Clin Med Phys; 2019 Sep; 20(9):78-85. PubMed ID: 31454148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of patient-specific bolus created using three-dimensional printing technique in photon radiotherapy.
    Fujimoto K; Shiinoki T; Yuasa Y; Hanazawa H; Shibuya K
    Phys Med; 2017 Jun; 38():1-9. PubMed ID: 28610688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy.
    Ricotti R; Ciardo D; Pansini F; Bazani A; Comi S; Spoto R; Noris S; Cattani F; Baroni G; Orecchia R; Vavassori A; Jereczek-Fossa BA
    Phys Med; 2017 Jul; 39():25-32. PubMed ID: 28711185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dosimetric study on the use of 3D-printed customized boluses in photon therapy: A hydrogel and silica gel study.
    Kong Y; Yan T; Sun Y; Qian J; Zhou G; Cai S; Tian Y
    J Appl Clin Med Phys; 2019 Jan; 20(1):348-355. PubMed ID: 30402935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Cost iPhone-Assisted Processing to Obtain Radiotherapy Bolus Using Optical Surface Reconstruction and 3D-Printing.
    Kang D; Wang B; Peng Y; Liu X; Deng X
    Sci Rep; 2020 May; 10(1):8016. PubMed ID: 32415217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of 3D-printed bolus produced at different printing parameters.
    Biltekin F; Yazici G; Ozyigit G
    Med Dosim; 2021 Summer; 46(2):157-163. PubMed ID: 33172711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system.
    Huang CY; Yang B; Lam WW; Tang KK; Li TC; Law WK; Cheung KY; Yu SK
    Phys Med Biol; 2021 Mar; 66(6):065021. PubMed ID: 33607641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A customized bolus produced using a 3-dimensional printer for radiotherapy.
    Kim SW; Shin HJ; Kay CS; Son SH
    PLoS One; 2014; 9(10):e110746. PubMed ID: 25337700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner.
    Dipasquale G; Poirier A; Sprunger Y; Uiterwijk JWE; Miralbell R
    Radiat Oncol; 2018 Oct; 13(1):203. PubMed ID: 30340612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric verification of cancer patient's treatment plan using an anthropomorphic, 3D-printed phantom.
    Waluk K; Pietrzak J
    Appl Radiat Isot; 2023 Jan; 191():110490. PubMed ID: 36327608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ninjaflex vs Superflab: A comparison of dosimetric properties, conformity to the skin surface, Planning Target Volume coverage and positional reproducibility for external beam radiotherapy.
    Robertson FM; Couper MB; Kinniburgh M; Monteith Z; Hill G; Pillai SA; Adamson DJA
    J Appl Clin Med Phys; 2021 Apr; 22(4):26-33. PubMed ID: 33689216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical note: Commissioning of a low-cost system for directly 3D printed flexible bolus.
    Baltz GC; Kirsner SM
    J Appl Clin Med Phys; 2023 Dec; 24(12):e14206. PubMed ID: 37962024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed boluses for radiotherapy: influence of geometrical and printing parameters on dosimetric characterization and air gap evaluation.
    Gugliandolo SG; Pillai SP; Rajendran S; Vincini MG; Pepa M; Pansini F; Zaffaroni M; Marvaso G; Alterio D; Vavassori A; Durante S; Volpe S; Cattani F; Jereczek-Fossa BA; Moscatelli D; Colosimo BM
    Radiol Phys Technol; 2024 Jun; 17(2):347-359. PubMed ID: 38351260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Workload implications for clinic workflow with implementation of three-dimensional printed customized bolus for radiation therapy: A pilot study.
    Ehler E; Sterling D; Dusenbery K; Lawrence J
    PLoS One; 2018; 13(10):e0204944. PubMed ID: 30273403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical applications of 3-dimensional printing in radiation therapy.
    Zhao Y; Moran K; Yewondwossen M; Allan J; Clarke S; Rajaraman M; Wilke D; Joseph P; Robar JL
    Med Dosim; 2017 Summer; 42(2):150-155. PubMed ID: 28495033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.