These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37321257)

  • 21. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes.
    Gabor NM; Zhong Z; Bosnick K; Park J; McEuen PL
    Science; 2009 Sep; 325(5946):1367-71. PubMed ID: 19745146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical and electronic properties of pristine and Ni-doped Si, Ge, and Sn sheets.
    Manjanath A; Kumar V; Singh AK
    Phys Chem Chem Phys; 2014 Jan; 16(4):1667-71. PubMed ID: 24322985
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A theoretical review on electronic, magnetic and optical properties of silicene.
    Chowdhury S; Jana D
    Rep Prog Phys; 2016 Dec; 79(12):126501. PubMed ID: 27753431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic response of zigzag nanoribbons under electric fields.
    Culchac FJ; Capaz RB; Costa AT; Latgé A
    J Phys Condens Matter; 2014 May; 26(21):216002. PubMed ID: 24806106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons.
    Javan M; Jorjani R; Soltani AR
    J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures and chemical properties of silicene: unlike graphene.
    Jose D; Datta A
    Acc Chem Res; 2014 Feb; 47(2):593-602. PubMed ID: 24215179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU; Hashmi A; Hong J
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14423-30. PubMed ID: 26076899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical studies on the structures and properties of doped graphenes with and without an external electrical field.
    Wang Y; Wang W; Zhu S; Yang G; Zhang Z; Li P
    RSC Adv; 2019 Apr; 9(21):11939-11950. PubMed ID: 35517038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon doped boron phosphide nanotubes: a computational study.
    Mirzaei M
    J Mol Model; 2011 Jan; 17(1):89-96. PubMed ID: 20379754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic, Optical, Thermoelectric and Elastic Properties of Rb
    Ouaaka E; Aazza M; Bouymajane A; Cacciola F
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study.
    Liu B; Su WS; Wu BR
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons.
    Pang Q; Zhang Y; Zhang JM; Ji V; Xu KW
    Nanoscale; 2011 Oct; 3(10):4330-8. PubMed ID: 21897985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoelectric transport in strained Si and Si/Ge heterostructures.
    Hinsche NF; Mertig I; Zahn P
    J Phys Condens Matter; 2012 Jul; 24(27):275501. PubMed ID: 22713229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the structural, electronic, and optical properties of Mn-doped CsPbCl
    Pandey N; Kumar A; Chakrabarti S
    RSC Adv; 2019 Sep; 9(51):29556-29565. PubMed ID: 35531544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural, electronic and optical properties of metalloid element (B, Si, Ge, As, Sb, and Te) doped g-ZnO monolayer: A DFT study.
    Wakhare SY; Deshpande MD
    J Mol Graph Model; 2020 Dec; 101():107753. PubMed ID: 32979658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering the Optoelectronic Properties of 2D Hexagonal Boron Nitride Monolayer Films by Sulfur Substitutional Doping.
    Tan B; Wu Y; Gao F; Yang H; Hu Y; Shang H; Zhang X; Zhang J; Li Z; Fu Y; Jia D; Zhou Y; Xiao H; Hu P
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16453-16461. PubMed ID: 35373556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic and Optical Properties of Twin T-Graphene Co-Doped with Boron and Phosphorus.
    Gao Y; Xie Y; Wang S; Li S; Chen L; Zhang J
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic and Near-Infrared-II Optical Properties of I-Doped Monolayer MoTe
    Zhao Y; Liu L; Liu S; Wang Y; Li Y; Zhang XD
    ACS Omega; 2022 Apr; 7(14):11956-11963. PubMed ID: 35449971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundamental optical processes in armchair carbon nanotubes.
    Hároz EH; Duque JG; Tu X; Zheng M; Hight Walker AR; Hauge RH; Doorn SK; Kono J
    Nanoscale; 2013 Feb; 5(4):1411-39. PubMed ID: 23340668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between energy band transition and optical absorption spectrum in bilayer armchair graphene nanoribbons.
    Nguyen LT; Ngo VC; Thai TL; Phan DT; Nguyen TA; Tran VT; Vu TT; Phan TK
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.