BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37321357)

  • 1. A head template for computational dose modelling for transcranial focused ultrasound stimulation.
    Hosseini S; Puonti O; Treeby B; Hanson LG; Thielscher A
    Neuroimage; 2023 Aug; 277():120227. PubMed ID: 37321357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation.
    Pasquinelli C; Montanaro H; Lee HJ; Hanson LG; Kim H; Kuster N; Siebner HR; Neufeld E; Thielscher A
    J Neural Eng; 2020 Jul; 17(4):046010. PubMed ID: 32485690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations.
    Montanaro H; Pasquinelli C; Lee HJ; Kim H; Siebner HR; Kuster N; Thielscher A; Neufeld E
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33836508
    [No Abstract]   [Full Text] [Related]  

  • 5. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation.
    Shin M; Peng Z; Kim HJ; Yoo SS; Yoon K
    Comput Methods Programs Biomed; 2023 Jul; 237():107591. PubMed ID: 37182263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation.
    Attali D; Tiennot T; Schafer M; Fouragnan E; Sallet J; Caskey CF; Chen R; Darmani G; Bubrick EJ; Butler C; Stagg CJ; Klein-Flügge M; Verhagen L; Yoo SS; Pauly KB; Aubry JF
    Brain Stimul; 2023; 16(1):48-55. PubMed ID: 36549480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation.
    Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X
    Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of image homogenisation on simulated transcranial ultrasound propagation.
    Robertson J; Urban J; Stitzel J; Treeby BE
    Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer.
    Yoon K; Lee W; Croce P; Cammalleri A; Yoo SS
    Phys Med Biol; 2018 May; 63(10):105001. PubMed ID: 29658494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked.
    Braun V; Blackmore J; Cleveland RO; Butler CR
    Brain Stimul; 2020; 13(6):1527-1534. PubMed ID: 32891872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial ultrasound simulations: A review.
    Angla C; Larrat B; Gennisson JL; Chatillon S
    Med Phys; 2023 Feb; 50(2):1051-1072. PubMed ID: 36047387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps.
    Robertson J; Martin E; Cox B; Treeby BE
    Phys Med Biol; 2017 Apr; 62(7):2559-2580. PubMed ID: 28165334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial MR Imaging-Guided Focused Ultrasound Interventions Using Deep Learning Synthesized CT.
    Su P; Guo S; Roys S; Maier F; Bhat H; Melhem ER; Gandhi D; Gullapalli RP; Zhuo J
    AJNR Am J Neuroradiol; 2020 Oct; 41(10):1841-1848. PubMed ID: 32883668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation study on the sensitivity of transcranial ray-tracing ultrasound modeling to skull properties.
    Drainville RA; Chatillon S; Moore D; Snell J; Padilla F; Lafon C
    J Acoust Soc Am; 2023 Aug; 154(2):1211-1225. PubMed ID: 37610718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial ultrasound simulation with uncertainty estimation.
    Stanziola A; Pineda-Pardo JA; Treeby B
    JASA Express Lett; 2023 May; 3(5):. PubMed ID: 37166991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Acoustic Simulation Framework for tFUS: A Feasibility Study Using Navigation System.
    Park TY; Koh H; Lee W; Park SH; Chang WS; Kim H
    Neuroimage; 2023 Nov; 282():120411. PubMed ID: 37844771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study.
    Truong DQ; Thomas C; Hampstead BM; Datta A
    Neuromodulation; 2022 Jun; 25(4):606-613. PubMed ID: 35125300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.