BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37321718)

  • 1. Characterizing lignin-containing microfibrillated cellulose based on water interactions, fibril properties, and imaging.
    Zhang X; Kitin P; Agarwal UP; Gleisner R; Zhu JY
    Carbohydr Polym; 2023 Sep; 316():120996. PubMed ID: 37321718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties.
    Spence KL; Venditti RA; Habibi Y; Rojas OJ; Pawlak JJ
    Bioresour Technol; 2010 Aug; 101(15):5961-8. PubMed ID: 20335025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and Hygroscopic Properties of Molded Pulp Products Using Different Wood-Based Cellulose Fibers.
    Dislaire C; Seantier B; Muzy M; Grohens Y
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.
    Hänninen TA; Kontturi E; Isogai A; Vuorinen T
    Biopolymers; 2008 Oct; 89(10):889-93. PubMed ID: 18488987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Residual Lignin Type and Amount on Bleaching of Kraft Pulp by Trametes versicolor.
    Reid ID; Paice MG
    Appl Environ Microbiol; 1994 May; 60(5):1395-400. PubMed ID: 16349246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology.
    Claro FC; Matos M; Jordão C; Avelino F; Lomonaco D; Magalhães WLE
    Carbohydr Polym; 2019 Aug; 218():307-314. PubMed ID: 31221335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-triggered calcium ion bridging in preparation of films of oxidized microfibrillated cellulose and pulp.
    Khanjani P; Ristolainen M; Kosonen H; Virtanen P; Ceccherini S; Maloney T; Vuorinen T
    Carbohydr Polym; 2019 Aug; 218():63-67. PubMed ID: 31221344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of microfibrillated cellulose with different carboxyethyl content.
    Chen JH; Liu JG; Su YQ; Xu ZH; Li MC; Ying RF; Wu JQ
    Carbohydr Polym; 2019 Feb; 206():616-624. PubMed ID: 30553365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation treatments to convert paper-grade Eucalyptus kraft pulp into microfibrillated cellulose.
    Vera-Loor A; Rigou P; Marlin N; Mortha G; Dufresne A
    Carbohydr Polym; 2022 Nov; 296():119946. PubMed ID: 36087994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compatibility between cellulose and hydrophobic polymer provided by microfibrillated lignocellulose.
    Gindl-Altmutter W; Obersriebnig M; Veigel S; Liebner F
    ChemSusChem; 2015 Jan; 8(1):87-91. PubMed ID: 25348210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Producing Cellulose Microfibrils at a High Solid Content with and without Mechanical or Enzymatic Pretreatment.
    Zhang X; Yelle DJ; Kitin P; Tong G; Zhu JY
    Biomacromolecules; 2024 Apr; 25(4):2509-2519. PubMed ID: 38514378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber.
    Chen Y; Wan J; Zhang X; Ma Y; Wang Y
    Carbohydr Polym; 2012 Jan; 87(1):730-736. PubMed ID: 34663028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filament spinning of unbleached birch kraft pulps: Effect of pulping intensity on the processability and the fiber properties.
    Ma Y; Stubb J; Kontro I; Nieminen K; Hummel M; Sixta H
    Carbohydr Polym; 2018 Jan; 179():145-151. PubMed ID: 29111037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindrance to nanofibrillation of undried pulp produced by the kraft cooking process.
    Ku TH; Nakatsubo F; Kuboki T; Yano H; Abe K
    Carbohydr Polym; 2022 Sep; 291():119481. PubMed ID: 35698321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of Mixed Compositions of Cellulose Nanocrystals, Microcrystalline Cellulose, and Lignin Nanoparticles from Wood Pulps.
    Abitbol T; Kubat M; Brännvall E; Kotov N; Johnson CM; Nizamov R; Nyberg M; Miettunen K; Nordgren N; Stevanic JS; Guerreiro MP
    ACS Omega; 2023 Jun; 8(24):21474-21484. PubMed ID: 37360452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in accessibility of cellulose during kraft pulping of wood in deuterium oxide.
    Pönni R; Galvis L; Vuorinen T
    Carbohydr Polym; 2014 Jan; 101():792-7. PubMed ID: 24299840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation.
    Long L; Tian D; Hu J; Wang F; Saddler J
    Bioresour Technol; 2017 Nov; 243():898-904. PubMed ID: 28738544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.
    Chen Z; Hu TQ; Jang HF; Grant E
    Appl Spectrosc; 2016 Dec; 70(12):1981-1993. PubMed ID: 27794038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining.
    Berto GL; Arantes V
    Int J Biol Macromol; 2019 Apr; 127():637-648. PubMed ID: 30708005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a lignocellulose fiber hornification treatment for improving the functionality of apple pomace-based pulp for molded pulp packaging.
    Gordy E; Jung J; Zhao Y
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130265. PubMed ID: 38368989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.